Bikinin contoh soal mtk fungsi kuadrat sama jawabannya donk
antonsonjaya
1.Tentukan titik balik fungsi kuadrat F(x) = 2(x + 2)2 + 3. Pembahasan Terlebih dahulu kita uraikan fungsi kuadrat di atas menjadi : F(x) = 2(x + 2)2 + 3 ⇒ F(x) = 2(x2 + 4x + 4) + 3 ⇒ F(x) = 2x2 + 8x + 8 + 3 ⇒ F(x) = 2x2 + 8x + 11 Dari fungsi di atas diperoleh a = 2, b = 8. Titik balik fungsi kuadrat dapat ditentukan dengan (x,y) = (-b/2a, F(-b/2a)). x = -b/2a ⇒ x = -8/2(2) ⇒ x = -8/4 ⇒ x = -2 y = F(-b/2a) = F(x) ⇒ y = F(-2) ⇒ y = 2(-2)2 + 8(-2) + 11 ⇒ y = 2(4) - 16 + 11 ⇒ y = 8 - 16 + 11 ⇒ y = 8 - 16 + 11 ⇒ y = 3 Jadi, titik balik untuk fungsi kuadrat F(x) = 2(x + 2)2 + 3 adalah (-2,3). Tentukan koordinat titik balik dari grafik fungsi kuadrat yang persamaannya y = (x - 6)(x + 2). Pembahasan Uraikan persamaan di atas menjadi : y = (x - 6)(x + 2) ⇒ y = x2 + 2x - 6x - 12 ⇒ y = x2 - 4x - 12 Dari persamaan di atas diperoleh a = 1 dan b = -4. Titik balik fungsi kuadrat dapat ditentukan dengan (x,y) = (-b/2a, F(-b/2a)). x = -b/2a ⇒ x = -(-4)/2(1) ⇒ x = 4/2 ⇒ x = 2 y = F(-b/2a) = F(x) ⇒ y = F(2) ⇒ y = 22 - 4(2) - 12 ⇒ y = 4 - 8 - 12 ⇒ y = -16 Jadi, titik balik fungsi kuadrat y = (x - 6)(x + 2) adalah (2,-16). Jika grafik fungsi y = x2 + px + k mempunyai titik puncak (1,2), maka tentukan nilai p dan k. Pembahasan Dari y = x2 + px + k diperoleh a = 1, b = p dan c = k. Titik puncak (1,2) maka x = 1 dan y = 2. x = -b/2a = 1 ⇒ -b/2a = 1 ⇒ -p/2 =1 ⇒ p = -2 y = y(-b/2a) = y(1) = 2 ⇒ x2 + px + k = 2 ⇒ (1)2 + -2(1) + k = 2 ⇒ 1 - 2 + k = 2 ⇒ k = 2 + 1 ⇒ k = 3 Jadi, p = -2 dan k = 3. Tentukan koordinat titik potong grafik fungsi kuadrat y = 3x2 - 2x - 2 dengan sumbu x dan sumbu y. Pembahasan (Perbaikan : soalnya salah ketik seharusnya y = 3x2 - x - 2) Titik potong pada sumbu x dapat diperoleh jika y = 0. 3x2 - 2x - 2 = 0 ⇒ (3x + 2)(x - 1) = 0 ⇒ x1 = -2/3 dan x2 = 1 Maka titik potongnya (-2/3,0) dan (1,0). Titik potong pada sumbu y dapat diperoleh dengan x = 0. ⇒ y = 3x2 - x - 2 ⇒ y = 3(0)2 - (0) - 2 ⇒ y = -2 Maka titik potongnya (0,-2).
0 votes Thanks 2
pinkynurann
kalo soal buat fungsi kuadrat memotong sumbu x di (x1, 0) dan (x2,,0) adad gk
antonsonjaya
Sebuah fungsi kuadrat memotong sumbu x di P(1,0) dan Q(2,0). Jika fungsi kuadrat tersebut melalui titik (0,6), maka persamaan fungsi kuadrat tersebut adalah ..... A. y = f(x) = 3x2 + 6x + 9 B. y = f(x) = 3x2 − 9x + 6 C. y = f(x) = 3x2 + 9x + 6 D. y = f(x) = 3x2 − 9x − 6 E. y = f(x) = 3x2 − 6x + 9 Pembahasan : Jika grafik fungsi kuadrat memotong sumbu x di dua titik (x1,0) dan (x2, 0), serta melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dapat dinyatakan dengan : y = f(x) = a(x −