Tentukan nilai kapasitansi pengganti [tex] (C_\text{seri})[/tex] yang dipasang seri:
[tex]\begin{aligned} \frac{ 1 }{ C_\text{seri} }&= \frac{1 }{ C_1}+ \frac{1 }{C_2 } \\ \frac{ 1 }{ C_\text{seri} }&= \frac{ 1}{2\:\mu }+ \frac{1 }{4\: \mu } \\\frac{ 1 }{ C_\text{seri} } &= \frac{ 2}{4\:\mu }+ \frac{1 }{4\: \mu } \\ \frac{ 1 }{ C_\text{seri} }&= \frac{3 }{4\: \mu } \end{aligned} [/tex]
Balik pecahannya, sehingga didapat:
[tex] \begin{aligned} C_\text{seri} &= \frac{4}{3}\:\mu\rm F \approx 1{,}3\:\mu\rm F\end{aligned} [/tex]
Tentukan nilai kapasitansi total:
[tex] \begin{aligned} C_\text{total} &= C_\text{seri}+C_3 \\ &= 1{,}3\:\mu + 4\:\mu\\ &= 5{,}3 \:\mu\rm F \end{aligned} [/tex]
Diketahui [tex] V = 8 \:\rm V, [/tex] maka energi total pada rangkaian tersebut adalah:
[tex] \begin{aligned} E_\text{total} &= \frac12\; C_\text{total}\; V^2 \\ &= \frac12( 5{,}3 \:\mu\rm)(8)^2 \\ &= \frac12(5{,}3\times 10^{-6})(64) \\ &= (5{,}3\times 10^{-6} )(32) \\ &= 169{,}6\times 10^{-6} \\ &= 1{,}696 \times 10^{-4} \\ &\approx 1{,}7 \times 10^{-4} \:\rm J \end{aligned} [/tex]
Jadi, jawaban yang tepat adalah C.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
KAPASITANSI KAPASITOR
Tentukan nilai kapasitansi pengganti [tex] (C_\text{seri})[/tex] yang dipasang seri:
[tex]\begin{aligned} \frac{ 1 }{ C_\text{seri} }&= \frac{1 }{ C_1}+ \frac{1 }{C_2 } \\ \frac{ 1 }{ C_\text{seri} }&= \frac{ 1}{2\:\mu }+ \frac{1 }{4\: \mu } \\\frac{ 1 }{ C_\text{seri} } &= \frac{ 2}{4\:\mu }+ \frac{1 }{4\: \mu } \\ \frac{ 1 }{ C_\text{seri} }&= \frac{3 }{4\: \mu } \end{aligned} [/tex]
Balik pecahannya, sehingga didapat:
[tex] \begin{aligned} C_\text{seri} &= \frac{4}{3}\:\mu\rm F \approx 1{,}3\:\mu\rm F\end{aligned} [/tex]
Tentukan nilai kapasitansi total:
[tex] \begin{aligned} C_\text{total} &= C_\text{seri}+C_3 \\ &= 1{,}3\:\mu + 4\:\mu\\ &= 5{,}3 \:\mu\rm F \end{aligned} [/tex]
Diketahui [tex] V = 8 \:\rm V, [/tex] maka energi total pada rangkaian tersebut adalah:
[tex] \begin{aligned} E_\text{total} &= \frac12\; C_\text{total}\; V^2 \\ &= \frac12( 5{,}3 \:\mu\rm)(8)^2 \\ &= \frac12(5{,}3\times 10^{-6})(64) \\ &= (5{,}3\times 10^{-6} )(32) \\ &= 169{,}6\times 10^{-6} \\ &= 1{,}696 \times 10^{-4} \\ &\approx 1{,}7 \times 10^{-4} \:\rm J \end{aligned} [/tex]
Jadi, jawaban yang tepat adalah C.