Jawaban:
[tex]\begin{aligned}\sf {9}^{n + 1} &= \sf \frac{1}{243} \: \: adalah \: 4 \end{aligned} \\ \\ \bf \to pembuktian \\ \begin{aligned}\sf {9}^{n + 1} &= \sf \frac{1}{243} \\ \sf {( {3}^{2} )}^{n + 1} &= \sf \frac{1}{ {3}^{5} } \\ \sf {3}^{2n + 2} &= \sf {3}^{ - 5} \\ \sf \cancel{3} {}^{2n + 2} &= \sf \cancel{ 3} {}^{ - 5} \\ \sf 2n + 2 &= \sf - 5 \\ \sf 2n&= \sf - 5 - 2 \\ \sf 2n&= \sf - 7 \\ \sf n&= \sf \red{ - \frac{7}{2}} \end{aligned} \\ \sf jawabannya \: \red{salah}[/tex]
'조슈아' (Svt)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
Penyelesaian :
[tex]\begin{aligned}\sf {9}^{n + 1} &= \sf \frac{1}{243} \: \: adalah \: 4 \end{aligned} \\ \\ \bf \to pembuktian \\ \begin{aligned}\sf {9}^{n + 1} &= \sf \frac{1}{243} \\ \sf {( {3}^{2} )}^{n + 1} &= \sf \frac{1}{ {3}^{5} } \\ \sf {3}^{2n + 2} &= \sf {3}^{ - 5} \\ \sf \cancel{3} {}^{2n + 2} &= \sf \cancel{ 3} {}^{ - 5} \\ \sf 2n + 2 &= \sf - 5 \\ \sf 2n&= \sf - 5 - 2 \\ \sf 2n&= \sf - 7 \\ \sf n&= \sf \red{ - \frac{7}{2}} \end{aligned} \\ \sf jawabannya \: \red{salah}[/tex]
'조슈아' (Svt)