[tex]Dane:\\d = 2r = 60 \ cm = 0,6 \ m \ \ \rightarrow \ \ r = 0,3 \ m\\n = 1200 \ obrotow\\t = 1 \ min = 60 \ s\\Szukane:\\v = ?\\a = ?[/tex]
Rozwiązanie
Obliczam prędkość v punktu:
[tex]v = \frac{2\pi r}{T}\\\\ale \ \ T = \frac{t}{n} = \frac{60 \ s}{1200} = 0,05 \ s\\\\zatem\\\\v = \frac{2\cdot3,14\cdot0,3 \ m}{0,05 \ s}\\\\\boxed{v = 37,68\frac{m}{s}}[/tex]
Obliczam przyspieszenie dośrodkowe a:
[tex]a = \frac{v^{2}}{r}\\\\a = \frac{(37,68\frac{m}{s})^{2}}{0,3 \ m}\\\\\boxed{a = 4732,608\frac{m}{s^{2}}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]Dane:\\d = 2r = 60 \ cm = 0,6 \ m \ \ \rightarrow \ \ r = 0,3 \ m\\n = 1200 \ obrotow\\t = 1 \ min = 60 \ s\\Szukane:\\v = ?\\a = ?[/tex]
Rozwiązanie
Obliczam prędkość v punktu:
[tex]v = \frac{2\pi r}{T}\\\\ale \ \ T = \frac{t}{n} = \frac{60 \ s}{1200} = 0,05 \ s\\\\zatem\\\\v = \frac{2\cdot3,14\cdot0,3 \ m}{0,05 \ s}\\\\\boxed{v = 37,68\frac{m}{s}}[/tex]
Obliczam przyspieszenie dośrodkowe a:
[tex]a = \frac{v^{2}}{r}\\\\a = \frac{(37,68\frac{m}{s})^{2}}{0,3 \ m}\\\\\boxed{a = 4732,608\frac{m}{s^{2}}}[/tex]