Odpowiedź:
10.7
a ) [tex]\frac{2 x - 1}{x - 1} = \frac{x + 3}{1- x}[/tex] x ≠ 1
( x - 1)*(x + 3) = ( 2 x - 1)*(1 - x)
x² + 3 x - x - 3 = 2 x - 2 x² - 1 + x
3 x² - x - 2 = 0
Δ = 1 - 4*3*( - 2) = 25 √Δ = 5
x = [tex]\frac{1- 5}{2*3} = \frac{-4}{6} = - \frac{2}{3}[/tex] lub x = [tex]\frac{1 + 5}{2*3} = 1[/tex]
Odp. x = - [tex]\frac{2}{3}[/tex]
==============
b ) [tex]\frac{7 - x}{x + 3} = \frac{x - 2}{7 + x}[/tex] x ≠ - 3 i x ≠ - 7
( 7 - x)*( 7 + x) = ( x + 3)*( x - 2)
49 - x² = x² -2 x + 3 x - 6
2 x² + x - 55 = 0
Δ = 1 - 4*2*( - 55) = 1 + 440 = 441 √Δ = 21
x = [tex]\frac{- 1 - 21 }{2*2} = - 5,5[/tex] lub x = [tex]\frac{- 1 + 21}{2*2} = 5[/tex]
==================================
10.8
a ) cd. x ≠ - 1 i x ≠ - 3
[tex]\frac{4*(x + 1)- 3*(x + 3)}{( x + 3)*(x + 1)} = \frac{2 x - 5}{x^2 + 4 x + 3}[/tex]
[tex]\frac{x - 5}{x^{2} + 4 x + 3} = \frac{2x - 5}{x^{2} + 4 x + 3}[/tex]
x - 5 = 2 x - 5
x = 0
========
b ) cd. x ≠ 1 i x ≠ 4
[tex]\frac{(x- 3)*(x - 4) + ( x - 1)*( x + 2)}{x^{2} - 5 x + 4} = \frac{18}{x^{2} - 5 x + 4}[/tex]
x² - 4 x - 3 x + 12 + x² + 2 x - x - 2 = 18
2 x² - 6 x - 8 = 0 /: 2
x² - 3 x - 4 = 0
( x + 1)*(x - 4) = 0
x + 1 = 0 lub x - 4 = 0
x = - 1 lub x = 4
Odp. x = - 1
==================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
10.7
a ) [tex]\frac{2 x - 1}{x - 1} = \frac{x + 3}{1- x}[/tex] x ≠ 1
( x - 1)*(x + 3) = ( 2 x - 1)*(1 - x)
x² + 3 x - x - 3 = 2 x - 2 x² - 1 + x
3 x² - x - 2 = 0
Δ = 1 - 4*3*( - 2) = 25 √Δ = 5
x = [tex]\frac{1- 5}{2*3} = \frac{-4}{6} = - \frac{2}{3}[/tex] lub x = [tex]\frac{1 + 5}{2*3} = 1[/tex]
Odp. x = - [tex]\frac{2}{3}[/tex]
==============
b ) [tex]\frac{7 - x}{x + 3} = \frac{x - 2}{7 + x}[/tex] x ≠ - 3 i x ≠ - 7
( 7 - x)*( 7 + x) = ( x + 3)*( x - 2)
49 - x² = x² -2 x + 3 x - 6
2 x² + x - 55 = 0
Δ = 1 - 4*2*( - 55) = 1 + 440 = 441 √Δ = 21
x = [tex]\frac{- 1 - 21 }{2*2} = - 5,5[/tex] lub x = [tex]\frac{- 1 + 21}{2*2} = 5[/tex]
==================================
10.8
a ) cd. x ≠ - 1 i x ≠ - 3
[tex]\frac{4*(x + 1)- 3*(x + 3)}{( x + 3)*(x + 1)} = \frac{2 x - 5}{x^2 + 4 x + 3}[/tex]
[tex]\frac{x - 5}{x^{2} + 4 x + 3} = \frac{2x - 5}{x^{2} + 4 x + 3}[/tex]
x - 5 = 2 x - 5
x = 0
========
b ) cd. x ≠ 1 i x ≠ 4
[tex]\frac{(x- 3)*(x - 4) + ( x - 1)*( x + 2)}{x^{2} - 5 x + 4} = \frac{18}{x^{2} - 5 x + 4}[/tex]
x² - 4 x - 3 x + 12 + x² + 2 x - x - 2 = 18
2 x² - 6 x - 8 = 0 /: 2
x² - 3 x - 4 = 0
( x + 1)*(x - 4) = 0
x + 1 = 0 lub x - 4 = 0
x = - 1 lub x = 4
Odp. x = - 1
==================
Szczegółowe wyjaśnienie: