[tex]b)\ \ 3\cdot(1,125)^{-2}+9^{-2}=3\cdot(\frac{1125}{1000})^{-2}+(\frac{1}{9})^2=3\cdot(\frac{9}{8})^{-2}+\frac{1}{81}=3\cdot(\frac{8}{9})^2+\frac{1}{81}=\\\\=3\cdot\frac{64}{81}+\frac{1}{81}=\frac{3\cdot64}{81}+\frac{1}{81}=\frac{192}{81}+\frac{1}{81}=\frac{193}{81}=2\frac{31}{81}\\\\\\Zastosowane\ \ wzory\\\\a^{-n}=(\frac{1}{a})^n\\\\(\frac{a}{b})^{-n}=(\frac{b}{a})^n[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]b)\ \ 3\cdot(1,125)^{-2}+9^{-2}=3\cdot(\frac{1125}{1000})^{-2}+(\frac{1}{9})^2=3\cdot(\frac{9}{8})^{-2}+\frac{1}{81}=3\cdot(\frac{8}{9})^2+\frac{1}{81}=\\\\=3\cdot\frac{64}{81}+\frac{1}{81}=\frac{3\cdot64}{81}+\frac{1}{81}=\frac{192}{81}+\frac{1}{81}=\frac{193}{81}=2\frac{31}{81}\\\\\\Zastosowane\ \ wzory\\\\a^{-n}=(\frac{1}{a})^n\\\\(\frac{a}{b})^{-n}=(\frac{b}{a})^n[/tex]