Odpowiedź:
[tex]b) \\-x^5+4x^3=0\\-x^3(x-2)(x+2)=0 | *(-1)\\x^3(x-2)(x+2)=0\\x-2=0, x^3=0, x+2=0\\x=2, x=0, x=-2[/tex]
[tex]c)\\x^6+x=2x^4+x\\x^6-2x^4=0\\x^4(x^2-2)=0\\x^4=0,x^2-2=0\\x=0,x^2=2\\x=0, x=\sqrt{2}, x=-\sqrt{2}[/tex]
b)
- x⁵ + 4x³ = 0
- x³(x² - 4) = 0 korzystamy ze wzoru skróconego mnożenia a² - b² =
= (a - b)(a + b) ,więc x² - 4 = x² - 2² = (x - 2)(x + 2)
- x³(x - 2)(x + 2) = 0
Iloczyn jest równy 0 jeżeli jeden z czynników jest równy 0
- x³ = 0 ∨ x- 2 = 0 ∨ x + 2 = 0
x = 0 ∨ x = 2 ∨ x = - 2
x = { - 2 , 0 , 2 }
c)
x⁶ + x = x + 2x⁴
x⁶ - 2x⁴ = x- x = 0
x⁴(x² - 2) = 0
x⁴(x - √2)(x + √2) = 0
x⁴ = 0 ∨ x - √2 = 0 ∨ x + √2 = 0
x = 0 ∨ x = √2 ∨ x = - √2
x = { - √2 , 0 , √2}
v - znaczy "lub"
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]b) \\-x^5+4x^3=0\\-x^3(x-2)(x+2)=0 | *(-1)\\x^3(x-2)(x+2)=0\\x-2=0, x^3=0, x+2=0\\x=2, x=0, x=-2[/tex]
[tex]c)\\x^6+x=2x^4+x\\x^6-2x^4=0\\x^4(x^2-2)=0\\x^4=0,x^2-2=0\\x=0,x^2=2\\x=0, x=\sqrt{2}, x=-\sqrt{2}[/tex]
Odpowiedź:
b)
- x⁵ + 4x³ = 0
- x³(x² - 4) = 0 korzystamy ze wzoru skróconego mnożenia a² - b² =
= (a - b)(a + b) ,więc x² - 4 = x² - 2² = (x - 2)(x + 2)
- x³(x - 2)(x + 2) = 0
Iloczyn jest równy 0 jeżeli jeden z czynników jest równy 0
- x³ = 0 ∨ x- 2 = 0 ∨ x + 2 = 0
x = 0 ∨ x = 2 ∨ x = - 2
x = { - 2 , 0 , 2 }
c)
x⁶ + x = x + 2x⁴
x⁶ - 2x⁴ = x- x = 0
x⁴(x² - 2) = 0
x⁴(x - √2)(x + √2) = 0
x⁴ = 0 ∨ x - √2 = 0 ∨ x + √2 = 0
x = 0 ∨ x = √2 ∨ x = - √2
x = { - √2 , 0 , √2}
v - znaczy "lub"