Penjelasan dengan langkah-langkah:
2.
Lim x→3 (x³+6x-6)
= (3)³+6(3)-6
= 27+18-6
= 39
===========================
3.
[tex] lim_{x\to4}( \frac{x - 4}{ {x}^{2} - x - 12 } ) \\ = lim_{x\to4}( \frac{x - 4}{ {x}^{2} - x - 12 } ) \\ = lim_{x\to4}( \frac{x - 4}{(x + 3)(x -4)} ) \\ = lim_{x\to4}( \frac{\cancel{x - 4}}{ (x + 3)\cancel{(x - 4)} } ) \\ = lim_{x\to4}( \frac{1}{x + 3} ) \\ = lim_{x\to4}( \frac{1}{4 + 3} ) \\ = \frac{1}{7} [/tex]
1. lim (x³ + 6x - 6)
x → 3
= (3³ + 6(3) - 6)
= 27 + 18 - 6
2. lim (x - 4)/(x² - x - 12)
x → 4
= (x - 4)/(x - 4)(x + 3)
= 1/(x + 3)
= 1/(4 + 3)
= 1/7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
2.
Lim x→3 (x³+6x-6)
= (3)³+6(3)-6
= 27+18-6
= 39
===========================
3.
[tex] lim_{x\to4}( \frac{x - 4}{ {x}^{2} - x - 12 } ) \\ = lim_{x\to4}( \frac{x - 4}{ {x}^{2} - x - 12 } ) \\ = lim_{x\to4}( \frac{x - 4}{(x + 3)(x -4)} ) \\ = lim_{x\to4}( \frac{\cancel{x - 4}}{ (x + 3)\cancel{(x - 4)} } ) \\ = lim_{x\to4}( \frac{1}{x + 3} ) \\ = lim_{x\to4}( \frac{1}{4 + 3} ) \\ = \frac{1}{7} [/tex]
Penjelasan dengan langkah-langkah:
1. lim (x³ + 6x - 6)
x → 3
= (3³ + 6(3) - 6)
= 27 + 18 - 6
= 39
2. lim (x - 4)/(x² - x - 12)
x → 4
= (x - 4)/(x - 4)(x + 3)
= 1/(x + 3)
= 1/(4 + 3)
= 1/7