Penjelasan dengan langkah-langkah:
7).
²log(3)= x and ³log(5)= y
²log(3). ³log(5)= ²log(5)= xy
= ⁴log(15)
= ²log(15)/²log(4)
= ²log(3 . 5) / ²log(2)²
= (²log(3) + ²log(5)) / 2
= (x + xy)/2
= ½ (x + xy)
.
8).
= (³log 36)² - (³log 4)² / (³log √12)
= (³log36-³log4)(³log36+³log4)/(³log 12^½)
= (³log(36/4))(³log(36.4))/(½ . ³log12)
= (³log9)(³log (144))/(½ . ³log 12)
= (³log3²)(³log (12²)/(½ . ³log 12)
= (2)(2. (³log 12))/(½)(³log 12)
= (2)(2)/(1/2)
= 4/(1/2)
= 4 . 2
= 8
²log3=x ³log5=y
Sifat logaritma yg digunakan
x log a + x log b=x log ab
a log b×b log c=a log c
-----------------
Maka
²log 3 × ³log 5=²log5=xy
⁴log 15
=2² log 3.5
=1/2(²log3+²log5)
=½(x+xy)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
7).
²log(3)= x and ³log(5)= y
²log(3). ³log(5)= ²log(5)= xy
= ⁴log(15)
= ²log(15)/²log(4)
= ²log(3 . 5) / ²log(2)²
= (²log(3) + ²log(5)) / 2
= (x + xy)/2
= ½ (x + xy)
.
8).
= (³log 36)² - (³log 4)² / (³log √12)
= (³log36-³log4)(³log36+³log4)/(³log 12^½)
= (³log(36/4))(³log(36.4))/(½ . ³log12)
= (³log9)(³log (144))/(½ . ³log 12)
= (³log3²)(³log (12²)/(½ . ³log 12)
= (2)(2. (³log 12))/(½)(³log 12)
= (2)(2)/(1/2)
= 4/(1/2)
= 4 . 2
= 8
Penyelesaian:
²log3=x ³log5=y
Sifat logaritma yg digunakan
x log a + x log b=x log ab
a log b×b log c=a log c
-----------------
Maka
²log 3 × ³log 5=²log5=xy
-----------------
⁴log 15
=2² log 3.5
=1/2(²log3+²log5)
=½(x+xy)