c. 5
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned} \displaystyle\tt~ {2}^{x + 3} & = \displaystyle\tt~ { ({64}^{ \frac{1}{3} } )}^{4} \\ \displaystyle\tt~ {2}^{x + 3} & = \displaystyle\tt~ {(( { {2}^{ {\cancel{6}}^{2} } )}^{ \frac{1}{\cancel{3}} } )}^{4} \\ \displaystyle\tt~ {2}^{x + 3} & = \displaystyle\tt~ {( {2}^{2} )}^{4} \\ \displaystyle\tt~ {\cancel{2}}^{x + 3} & = \displaystyle\tt~ {\cancel{2}}^{8} \\ \displaystyle\tt~x + 3& = \displaystyle\tt~8 \\ \displaystyle\tt~x & = \displaystyle\tt~8 - 3 \\ \displaystyle\tt~x& =\displaystyle\tt~5 \end{aligned}[/tex]
Jawaban:
C. 5
[tex]2 {}^{x + 3} = (64 {}^{ \frac{1}{3} } ) {}^{4} \\ 2 {}^{x + 3} = (2 {}^{6 \times \frac{1}{3} }) {}^{4} \\ 2 {}^{x + 3} = 2 {}^{8} \\ x = 8 - 3 \\ x = 5[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
c. 5
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned} \displaystyle\tt~ {2}^{x + 3} & = \displaystyle\tt~ { ({64}^{ \frac{1}{3} } )}^{4} \\ \displaystyle\tt~ {2}^{x + 3} & = \displaystyle\tt~ {(( { {2}^{ {\cancel{6}}^{2} } )}^{ \frac{1}{\cancel{3}} } )}^{4} \\ \displaystyle\tt~ {2}^{x + 3} & = \displaystyle\tt~ {( {2}^{2} )}^{4} \\ \displaystyle\tt~ {\cancel{2}}^{x + 3} & = \displaystyle\tt~ {\cancel{2}}^{8} \\ \displaystyle\tt~x + 3& = \displaystyle\tt~8 \\ \displaystyle\tt~x & = \displaystyle\tt~8 - 3 \\ \displaystyle\tt~x& =\displaystyle\tt~5 \end{aligned}[/tex]
Jawaban:
C. 5
Penjelasan dengan langkah-langkah:
[tex]2 {}^{x + 3} = (64 {}^{ \frac{1}{3} } ) {}^{4} \\ 2 {}^{x + 3} = (2 {}^{6 \times \frac{1}{3} }) {}^{4} \\ 2 {}^{x + 3} = 2 {}^{8} \\ x = 8 - 3 \\ x = 5[/tex]