20. Nilai limx->π/3[(cosx-sinπ/6)/(π/6 - x/2)]=√3
21. Nilai dari limx->π/4[(cos2x/(cosx-sinx)]=√2
Pembahasan:
beberapa identitas yang diperlukan untuk kasus ini adalah
sin(π/2-x)=cosx
sina-sinb=2cos1/2(a+b) sin1/2(a-b)
cos2x=cos²x-sin²x
Kembali kesoal
limx->π/3[(cosx-sinπ/6):(π/6 - x/2)]
=limx->π/3[sin(π/2-x)-sinπ/6:(π/6 - x/2)]
=limx->π/3[2cos1/2(π/2-x+π/6) sin1/2(π/2-x-π/6):(π/6 - x/2)]
=limx->π/3[2cos1/2(4π/6 - x) sin1/2(2π/6 - x):(π/6-x/2)]
=limx->π/3[2cos(2π/6-x/2) sin[(π/6-x/2):(π/6-x/2)]
=2 cos(2π/6-π/6) lim(x-π/3)->0 [sin1/2(π/3-x):1/2(π/3-x)]
=2 cosπ/6
=2(1/2√3)
=√3
note:lim(x-π/3)->0 [sin1/2(π/3-x):1/2(π/3-x)]=1
limx->π/3=lim(x-π/3)->0
20.limx->π/4[(cos2x/(cosx-sinx)]
=limx->π/4[cos²x-sin²x/(cosx-sinx)]
=limx->π/4[((cosx+sinx)(cosx-sinx)/(cosx-sinx)]
=limx->π/4[cosx+sinx]
=cosπ/4+sinπ/4
=1/2√2+1/2√2
=√2
note:cos²x-sin²x=(cosx+sinx)(cosx-sinx)
Pelajari juga:
brainly.co.id/tugas/5036976
Detai jawaban:
Mapel:Matematika
Kelas:11
Kode soal:2
Bab:8
Kode kategori:11.2.8
Kata kunci:Limit trigonometri
#Backtoschool2019
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
20. Nilai limx->π/3[(cosx-sinπ/6)/(π/6 - x/2)]=√3
21. Nilai dari limx->π/4[(cos2x/(cosx-sinx)]=√2
Pembahasan:
beberapa identitas yang diperlukan untuk kasus ini adalah
sin(π/2-x)=cosx
sina-sinb=2cos1/2(a+b) sin1/2(a-b)
cos2x=cos²x-sin²x
Kembali kesoal
limx->π/3[(cosx-sinπ/6):(π/6 - x/2)]
=limx->π/3[sin(π/2-x)-sinπ/6:(π/6 - x/2)]
=limx->π/3[2cos1/2(π/2-x+π/6) sin1/2(π/2-x-π/6):(π/6 - x/2)]
=limx->π/3[2cos1/2(4π/6 - x) sin1/2(2π/6 - x):(π/6-x/2)]
=limx->π/3[2cos(2π/6-x/2) sin[(π/6-x/2):(π/6-x/2)]
=2 cos(2π/6-π/6) lim(x-π/3)->0 [sin1/2(π/3-x):1/2(π/3-x)]
=2 cosπ/6
=2(1/2√3)
=√3
note:lim(x-π/3)->0 [sin1/2(π/3-x):1/2(π/3-x)]=1
limx->π/3=lim(x-π/3)->0
20.limx->π/4[(cos2x/(cosx-sinx)]
=limx->π/4[cos²x-sin²x/(cosx-sinx)]
=limx->π/4[((cosx+sinx)(cosx-sinx)/(cosx-sinx)]
=limx->π/4[cosx+sinx]
=cosπ/4+sinπ/4
=1/2√2+1/2√2
=√2
note:cos²x-sin²x=(cosx+sinx)(cosx-sinx)
Pelajari juga:
brainly.co.id/tugas/5036976
Detai jawaban:
Mapel:Matematika
Kelas:11
Kode soal:2
Bab:8
Kode kategori:11.2.8
Kata kunci:Limit trigonometri
#Backtoschool2019