Penjelasan dengan langkah-langkah:
Setelahnya tentukan unsur layang-layang:
Layang - Layang ABCD
Layang - Layang BEFG
Luas layang-layang ABCD dengan BEFG (luas gabungan) ?
Rumus: [tex]\boxed {\sf \bf L = \frac{d_1 \times d_2}{2} }[/tex], maka:
Luas layang-layang ABCD=> [tex]\sf \bf L = \frac{d_1 \times d_2}{2} \\\sf \bf L = \frac{21 \times 27}{2} \\\sf \bf L = \frac{567}{2} \\\underline {\boxed {\blue {\sf \bf L = 283 \frac{1}{2} \ cm^2 \iff \sf \bf 283,5 \ cm^2}}}[/tex]
Luas layang-layang BEFG=> [tex]\sf \bf L = \frac{d_1 \times d_2}{2} \\\sf \bf L = \frac{7 \times 9 }{2}\\\sf \bf L = \frac{63}{2} \\\underline {\boxed {\blue {\sf \bf L = 31 \frac{1}{2} \ cm^2 \iff \sf \bf 31,5 \ cm^2}}}[/tex]
Luas Gabungan=> 283,5 cm² + 31,5 cm² = [tex]\large {\underline {\boxed {\blue {\sf \bf 315 \ cm^2}}}}[/tex]
[tex] \large {\boxed {\blue {\star \:Answered \: By: \: \bold {sulkifli2018} \star} } } [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
KESEBANGUNAN
Diketahui:
=> [tex]\sf \frac{AB}{EB} = \frac{BD}{BF} \\\sf \frac{15}{5} = \frac{21}{BF} \\\sf 15 \times BF = 5 \times 21\\\sf BF = \frac{105}{15} \\\sf \bf BF = 7 \ cm[/tex]
=> [tex]\sf \frac{AB}{EB} = \frac{AC}{EG} \\\sf \frac{15}{5} = \frac{AC}{9} \\\sf 5 \times AC = 15 \times 9\\\sf AC = \frac{135}{5} \\\sf \bf AC = 27 \ cm[/tex]
Setelahnya tentukan unsur layang-layang:
Layang - Layang ABCD
Layang - Layang BEFG
Ditanyakan:
Luas layang-layang ABCD dengan BEFG (luas gabungan) ?
Penyelesaian:
Rumus: [tex]\boxed {\sf \bf L = \frac{d_1 \times d_2}{2} }[/tex], maka:
Luas layang-layang ABCD
=> [tex]\sf \bf L = \frac{d_1 \times d_2}{2} \\\sf \bf L = \frac{21 \times 27}{2} \\\sf \bf L = \frac{567}{2} \\\underline {\boxed {\blue {\sf \bf L = 283 \frac{1}{2} \ cm^2 \iff \sf \bf 283,5 \ cm^2}}}[/tex]
Luas layang-layang BEFG
=> [tex]\sf \bf L = \frac{d_1 \times d_2}{2} \\\sf \bf L = \frac{7 \times 9 }{2}\\\sf \bf L = \frac{63}{2} \\\underline {\boxed {\blue {\sf \bf L = 31 \frac{1}{2} \ cm^2 \iff \sf \bf 31,5 \ cm^2}}}[/tex]
Luas Gabungan
=> 283,5 cm² + 31,5 cm² = [tex]\large {\underline {\boxed {\blue {\sf \bf 315 \ cm^2}}}}[/tex]
[tex] \large {\boxed {\blue {\star \:Answered \: By: \: \bold {sulkifli2018} \star} } } [/tex]