Penjelasan dengan langkah-langkah:
lim (1 - √x+1 / x^2 - x)
x -> 0
= ((1 - √x+1)(1+√x+1) / (x^2 - x)(1+√x+1))
= (1 - x - 1 / x(x - 1) (1+√x+1))
= (-x / x(x - 1) (1+√x+1))
= (- 1 / (x - 1) (1+√x+1))
= (-1 / ((0) - 1) (1+√(0)+1))
= (-1 / (-1)(1 + √1))
= - 1 / - 1 ( 1 + 1)
= -1 / - 2
= 1/2
☆brainlybachelor7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1/2
Penjelasan dengan langkah-langkah:
lim (1 - √x+1 / x^2 - x)
x -> 0
= ((1 - √x+1)(1+√x+1) / (x^2 - x)(1+√x+1))
= (1 - x - 1 / x(x - 1) (1+√x+1))
= (-x / x(x - 1) (1+√x+1))
= (- 1 / (x - 1) (1+√x+1))
= (-1 / ((0) - 1) (1+√(0)+1))
= (-1 / (-1)(1 + √1))
= - 1 / - 1 ( 1 + 1)
= -1 / - 2
= 1/2
☆brainlybachelor7