5). 3x = (7x - 60)°
3x - 7x = -60
-4x = -60
x = 60/4
x = 15°
n = (3x)°
= 3(15)
= 45°
Jadi, besar sudut n adalah 45°//
6). Komponen
____________
Segitiga siku-siku AEF (Rumus Teorema phytagoras berlaku!!), cari panjang AF
[tex] \sf \: AF = \sqrt{AE {}^{2} - EF {}^{2} } \\ \sf \: = \sqrt{ {5}^{2} - } 4 {}^{2} \\ = \sf\sqrt{25 - 16} \\ = \sqrt{9} \\ = 3[/tex]
______________
Trapesium sama kaki (ACDE), AC belum diketahui maka dicari panjang AC
Panjang AC = 11 + 3 + 3 = 17cm
Segitiga ABC, Cari panjang AB yang belum diketahui menggunakan rumus Teorema Phytagoras
[tex] \sf \: AB = \sqrt{ AC {}^{2} - BC {}^{2} } \\ \sf \: = \sqrt{ {17}^{2} - {8}^{2} } \\ \sf = \sqrt{225} \\ = 15[/tex]
Keliling bangun ABCDE
Keliling = 15 + 8 + 5 + 11 + 5 = 44
[tex] \boxed{ \colorbox{lightgreen}{ \color{green}AlfiAp}}[/tex]
5) 3x = 7x - 60
(3 - 7)x = -60
x = -60/-4
x = 15/1
MAKA :
= (3 × 15)°
6) P.AF :
= √5² - 4²
= √(5(5) - (4(4)
= √25 - 16
= √9
= √3²
= 3 CM
P.AC :
= (11 + 3 + 3)CM
= (14 + 3)CM
= 17 CM
P.AB :
= √17² - 8²
= √(17(17) - (8(8)
= √289 - 64
= √225
= √15²
= 15 CM
MAKA K :
K = (15 + 8 + 5 + 11 + 5)CM
= (23 + 16 + 5)CM
= (39 + 5)CM
= 44 CM
[tex]\boxed { \color{lime} \mathcal{INFINITE \: WORLD}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
5). 3x = (7x - 60)°
3x - 7x = -60
-4x = -60
x = 60/4
x = 15°
n = (3x)°
= 3(15)
= 45°
Jadi, besar sudut n adalah 45°//
6). Komponen
____________
Segitiga siku-siku AEF (Rumus Teorema phytagoras berlaku!!), cari panjang AF
[tex] \sf \: AF = \sqrt{AE {}^{2} - EF {}^{2} } \\ \sf \: = \sqrt{ {5}^{2} - } 4 {}^{2} \\ = \sf\sqrt{25 - 16} \\ = \sqrt{9} \\ = 3[/tex]
______________
Trapesium sama kaki (ACDE), AC belum diketahui maka dicari panjang AC
Panjang AC = 11 + 3 + 3 = 17cm
______________
Segitiga ABC, Cari panjang AB yang belum diketahui menggunakan rumus Teorema Phytagoras
[tex] \sf \: AB = \sqrt{ AC {}^{2} - BC {}^{2} } \\ \sf \: = \sqrt{ {17}^{2} - {8}^{2} } \\ \sf = \sqrt{225} \\ = 15[/tex]
Keliling bangun ABCDE
Keliling = 15 + 8 + 5 + 11 + 5 = 44
[tex] \boxed{ \colorbox{lightgreen}{ \color{green}AlfiAp}}[/tex]
5) 3x = 7x - 60
(3 - 7)x = -60
-4x = -60
x = -60/-4
x = 60/4
x = 15/1
x = 15°
MAKA :
= (3 × 15)°
= 45°
6) P.AF :
= √5² - 4²
= √(5(5) - (4(4)
= √25 - 16
= √9
= √3²
= 3 CM
P.AC :
= (11 + 3 + 3)CM
= (14 + 3)CM
= 17 CM
P.AB :
= √17² - 8²
= √(17(17) - (8(8)
= √289 - 64
= √225
= √15²
= 15 CM
MAKA K :
K = (15 + 8 + 5 + 11 + 5)CM
= (23 + 16 + 5)CM
= (39 + 5)CM
= 44 CM
[tex]\boxed { \color{lime} \mathcal{INFINITE \: WORLD}}[/tex]