INTegral
i)
[tex]\sf \int {\dfrac{x^2}{\sqrt{x^3 + 1}}}dx[/tex]
[tex]\sf \int {x^2}(x^3 + 1)^{-\frac{1}{2}} dx[/tex]
u = x³ + 1du = 3x² dxx² dx = 1/3 du
[tex]\sf \int {\dfrac{x^2}{\sqrt{x^3 + 1}}}dx= \sf \int {\frac{1}{3}}U^{-\frac{1}{2}}\ du[/tex]
[tex]\sf = \frac{1}{6}U^{\frac{1}{2}} + c = \frac{1}{6}\sqrt{(x^3 + 1)} +c[/tex]
2. ∫ sin³ 2θ dθ= ∫ (sin 2θ)³ dθ= ∫ (2 sin θ cos θ)³ dθ
= ∫ 8 sin³ θ cos³ θ dθ
= 8 ∫ sin² θ. sin θ. cos³ dθ
= 8 ∫ (1 - cos²θ) cos³θ. sin θ dθu = cos θ du = - sin θ dθ ⇒ sin θ dθ = - du= 8 ∫ (1 - cos²θ) cos³θ. sin θ dθ = 8 ∫ (1 -u²) u³ (- dθ)= -8 ∫ (1 -u²) u³ dθ= -8 ∫ (u³ - u⁵) dθ= - 8 [ ¹/₄ u⁴ - ¹/₆ u⁶] + c= - 2u⁴ + 4/3 u⁶ + c= - 1/3 u⁴ (6- 4u²) + c= - 1/3 cos⁴ θ (6 - 4 cos²θ) + c
3.
[tex]\sf \int_{-1}^2|2x- 3| dx[/tex]2x -3 = 0x = 3/2
[tex]\sf = \int\limits^{\frac{3}{2}}_{-1} -(2 x+ 3) \, dx+ \int\limits^{2}_{\frac{3}{2}} +(2 x+ 3) \, dx[/tex]
[tex]\sf = \int\limits^{\frac{3}{2}}_{-1} -2 x- 3 \, dx+ \int\limits^{2}_{\frac{3}{2}} 2 x+ 3 \, dx[/tex]
[tex]\sf = [ -x^2 - 3x]^{\frac{3}{2}}_{-1} + [ x^2 + 3x]^{2}_{\frac{3}{2}}[/tex]
[tex]\sf = \frac{25}{4} + \frac{1}{4}= \frac{26}{4}[/tex]
[tex]\sf = \frac{13}{2}= 6, 5[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
INTegral
i)
[tex]\sf \int {\dfrac{x^2}{\sqrt{x^3 + 1}}}dx[/tex]
[tex]\sf \int {x^2}(x^3 + 1)^{-\frac{1}{2}} dx[/tex]
u = x³ + 1
du = 3x² dx
x² dx = 1/3 du
[tex]\sf \int {\dfrac{x^2}{\sqrt{x^3 + 1}}}dx= \sf \int {\frac{1}{3}}U^{-\frac{1}{2}}\ du[/tex]
[tex]\sf = \frac{1}{6}U^{\frac{1}{2}} + c = \frac{1}{6}\sqrt{(x^3 + 1)} +c[/tex]
2. ∫ sin³ 2θ dθ
= ∫ (sin 2θ)³ dθ
= ∫ (2 sin θ cos θ)³ dθ
= ∫ 8 sin³ θ cos³ θ dθ
= 8 ∫ sin² θ. sin θ. cos³ dθ
= 8 ∫ (1 - cos²θ) cos³θ. sin θ dθ
u = cos θ
du = - sin θ dθ ⇒ sin θ dθ = - du
= 8 ∫ (1 - cos²θ) cos³θ. sin θ dθ = 8 ∫ (1 -u²) u³ (- dθ)
= -8 ∫ (1 -u²) u³ dθ
= -8 ∫ (u³ - u⁵) dθ
= - 8 [ ¹/₄ u⁴ - ¹/₆ u⁶] + c
= - 2u⁴ + 4/3 u⁶ + c
= - 1/3 u⁴ (6- 4u²) + c
= - 1/3 cos⁴ θ (6 - 4 cos²θ) + c
3.
[tex]\sf \int_{-1}^2|2x- 3| dx[/tex]
2x -3 = 0
x = 3/2
[tex]\sf = \int\limits^{\frac{3}{2}}_{-1} -(2 x+ 3) \, dx+ \int\limits^{2}_{\frac{3}{2}} +(2 x+ 3) \, dx[/tex]
[tex]\sf = \int\limits^{\frac{3}{2}}_{-1} -2 x- 3 \, dx+ \int\limits^{2}_{\frac{3}{2}} 2 x+ 3 \, dx[/tex]
[tex]\sf = [ -x^2 - 3x]^{\frac{3}{2}}_{-1} + [ x^2 + 3x]^{2}_{\frac{3}{2}}[/tex]
[tex]\sf = \frac{25}{4} + \frac{1}{4}= \frac{26}{4}[/tex]
[tex]\sf = \frac{13}{2}= 6, 5[/tex]