Penjelasan dengan langkah-langkah:
Pythagoras: AB = √(AC^2 + BC^2) = √(1^2 + (√3)^2) = √(1 + 3) = √4 = 2. Jadi, sisi terpanjang dari segitiga siku-siku tersebut adalah sisi AB dengan panjang 2.
..
[tex]\begin{aligned}~~~~~~ c ~~~&= \sqrt{a^2 + b^2} \\&= \sqrt{\sqrt{3}^2 + 1^2} \\&= \sqrt{3 + 1} \\&= \sqrt{4} \\&= \boxed{\bold{\underline{2~satuan}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 06 - 05 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Pythagoras: AB = √(AC^2 + BC^2) = √(1^2 + (√3)^2) = √(1 + 3) = √4 = 2. Jadi, sisi terpanjang dari segitiga siku-siku tersebut adalah sisi AB dengan panjang 2.
Verified answer
Teorema Pythagoras
..
[tex]\begin{aligned}~~~~~~ c ~~~&= \sqrt{a^2 + b^2} \\&= \sqrt{\sqrt{3}^2 + 1^2} \\&= \sqrt{3 + 1} \\&= \sqrt{4} \\&= \boxed{\bold{\underline{2~satuan}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 06 - 05 - 2023}}[/tex]