Jawaban:
1.a) [tex] {5}^{ - 4} [/tex]
1.b) [tex] {2}^{ - 7} [/tex]
2.a) [tex] {a}^{21} [/tex]
2.b) [tex] {a}^{9} [/tex]
Penjelasan dengan langkah-langkah:
Eksponen
_ _ _ _ _ _ _ _ _ _ _ _ _ _
Sifat eksponen
[tex]\boxed{ \begin{array}{l}{a}^{0} = 1 \\ \\ {a}^{m} .{a}^{n} = {a}^{m + n} \\ \\ {a}^{m} \div {a}^{n} = \dfrac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} \\ \\ { \left( {a}^{m} . {b }^{n} \right)}^{p} = {a}^{mp}. {b}^{np} \\ \\{ \left( \dfrac{{a}^{m} }{{b}^{n} } \right)}^{p} = \frac{{a}^{mp}}{ {b}^{np}} \\ \\ {a}^{ - n} = \frac{1}{ {a}^{n} } \\ \\ \sqrt[m]{ {a}^{n}} = {a}^{ \frac{n}{m} } \end{array}}[/tex]
penyelesaian
1.a.)
[tex] \dfrac{1}{625} = \dfrac{1}{5 \times 5 \times 5 \times 5} = \dfrac{1}{ {5}^{4} } = {5}^{ - 4} [/tex]
1.b.)
[tex] \dfrac{ {2}^{5} }{ {8}^{4} } = \dfrac{ {2}^{5} }{ {( {2}^{3} )}^{4} } = \dfrac{ {2}^{5} }{ {2}^{12} } [/tex]
[tex] = {2}^{5 - 12} = {2}^{ - 7} [/tex]
2.a.)
[tex] {( {a}^{3}) }^{7} = {a}^{3 \times 7} = {a}^{21} [/tex]
2.b.)
[tex] { \left( {a}^{5} \div {a}^{2} \right)}^{3} = { \left( {a}^{5 - 2} \right)}^{3} = { \left( {a}^{3} \right)}^{3} [/tex]
[tex] = {a}^{3 \times 3} = {a}^{9} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
1.a) [tex] {5}^{ - 4} [/tex]
1.b) [tex] {2}^{ - 7} [/tex]
2.a) [tex] {a}^{21} [/tex]
2.b) [tex] {a}^{9} [/tex]
Penjelasan dengan langkah-langkah:
Eksponen
_ _ _ _ _ _ _ _ _ _ _ _ _ _
Sifat eksponen
[tex]\boxed{ \begin{array}{l}{a}^{0} = 1 \\ \\ {a}^{m} .{a}^{n} = {a}^{m + n} \\ \\ {a}^{m} \div {a}^{n} = \dfrac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} \\ \\ { \left( {a}^{m} . {b }^{n} \right)}^{p} = {a}^{mp}. {b}^{np} \\ \\{ \left( \dfrac{{a}^{m} }{{b}^{n} } \right)}^{p} = \frac{{a}^{mp}}{ {b}^{np}} \\ \\ {a}^{ - n} = \frac{1}{ {a}^{n} } \\ \\ \sqrt[m]{ {a}^{n}} = {a}^{ \frac{n}{m} } \end{array}}[/tex]
_ _ _ _ _ _ _ _ _ _ _ _ _ _
penyelesaian
1.a.)
[tex] \dfrac{1}{625} = \dfrac{1}{5 \times 5 \times 5 \times 5} = \dfrac{1}{ {5}^{4} } = {5}^{ - 4} [/tex]
1.b.)
[tex] \dfrac{ {2}^{5} }{ {8}^{4} } = \dfrac{ {2}^{5} }{ {( {2}^{3} )}^{4} } = \dfrac{ {2}^{5} }{ {2}^{12} } [/tex]
[tex] = {2}^{5 - 12} = {2}^{ - 7} [/tex]
2.a.)
[tex] {( {a}^{3}) }^{7} = {a}^{3 \times 7} = {a}^{21} [/tex]
2.b.)
[tex] { \left( {a}^{5} \div {a}^{2} \right)}^{3} = { \left( {a}^{5 - 2} \right)}^{3} = { \left( {a}^{3} \right)}^{3} [/tex]
[tex] = {a}^{3 \times 3} = {a}^{9} [/tex]