Respuesta:
Planteando:
CxS² + SxC² = (38/π)R Por propiedad C = 9k , S = 10K, R = (π/20)k
10k(9K)² + 9k(10K)² = (38/π)(π/20)k simplificamos
10k(81k²) + 9k(100k²) = (19/10)k
810k³ + 900k³ = (19/10)k
1710k² = 19/10 simplificando
90k² = 1/10
k² = 1/900
k = √(1/900)
k = 1/30
Nos piden la medida en Radianes:
R = (π/20)k reemplazamos el valor de k
R = (π/20)(1/30)
R = π/600 rad
Explicación paso a paso:
corona pliss
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
Planteando:
CxS² + SxC² = (38/π)R Por propiedad C = 9k , S = 10K, R = (π/20)k
10k(9K)² + 9k(10K)² = (38/π)(π/20)k simplificamos
10k(81k²) + 9k(100k²) = (19/10)k
810k³ + 900k³ = (19/10)k
1710k² = 19/10 simplificando
90k² = 1/10
k² = 1/900
k = √(1/900)
k = 1/30
Nos piden la medida en Radianes:
R = (π/20)k reemplazamos el valor de k
R = (π/20)(1/30)
R = π/600 rad
Explicación paso a paso:
corona pliss