Respuesta:
8
Explicación paso a paso:
Solo factoriza el factor comun:
[tex] \frac{ {2}^{x}(1 + {2}^{1} + {2}^{2} + {2}^{3}) }{ {2}^{x}( {2}^{ - 3} + {2}^{ - 2} + {2}^{ - 1} + 1) } \\ \frac{15}{( \frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1) } \\ \frac{15}{ \frac{1 + 2 + 4 + 8}{8} } \\ \frac{15}{ \frac{15}{8} } \\ \frac{ \frac{15}{1} }{ \frac{15}{8} } \\ 8[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
8
Explicación paso a paso:
Solo factoriza el factor comun:
[tex] \frac{ {2}^{x}(1 + {2}^{1} + {2}^{2} + {2}^{3}) }{ {2}^{x}( {2}^{ - 3} + {2}^{ - 2} + {2}^{ - 1} + 1) } \\ \frac{15}{( \frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1) } \\ \frac{15}{ \frac{1 + 2 + 4 + 8}{8} } \\ \frac{15}{ \frac{15}{8} } \\ \frac{ \frac{15}{1} }{ \frac{15}{8} } \\ 8[/tex]