Respuesta:
x₂ = 2
Explicación paso a paso:
1 / log(ₓ₊₃) (10) + 1 / log(ₓ₊₁) (10) = log₁₀(15)
Cambio de base
1 / (log₁₀(10) / log₁₀(x+3)) + 1 / (log₁₀(10) / log₁₀(x+1)) = log₁₀ (15)
1 / (1 / log₁₀(x + 3)) + 1 / (1 / log₁₀(x + 1)) = log₁₀ (15)
Medios y extremos
log₁₀(x + 3) + log₁₀(x + 1) = log₁₀ (15)
log₁₀((x + 3)(x + 1)) = log₁₀ (15)
(x + 3)(x + 1) = 15
x² + 4x + 3 = 15
x² + 4x + 3 - 15 = 0
x² + 4x + - 12 = 0 Multiplicados -12 y Sumados 4
(x + 6)(x - 2) = 0
x₁ + 6 = 0
x₁ = -6 No es solución no existe logaritmo de base negativa
x₂ - 2 = 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
x₂ = 2
Explicación paso a paso:
1 / log(ₓ₊₃) (10) + 1 / log(ₓ₊₁) (10) = log₁₀(15)
Cambio de base
1 / (log₁₀(10) / log₁₀(x+3)) + 1 / (log₁₀(10) / log₁₀(x+1)) = log₁₀ (15)
1 / (1 / log₁₀(x + 3)) + 1 / (1 / log₁₀(x + 1)) = log₁₀ (15)
Medios y extremos
log₁₀(x + 3) + log₁₀(x + 1) = log₁₀ (15)
log₁₀((x + 3)(x + 1)) = log₁₀ (15)
(x + 3)(x + 1) = 15
x² + 4x + 3 = 15
x² + 4x + 3 - 15 = 0
x² + 4x + - 12 = 0 Multiplicados -12 y Sumados 4
(x + 6)(x - 2) = 0
x₁ + 6 = 0
x₁ = -6 No es solución no existe logaritmo de base negativa
x₂ - 2 = 0
x₂ = 2