" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
1°) A(x) - C(x) = 2x + 5 - (x + 2) = 2x + 5 - x - 2 = x + 3
2°) B(x).A(x) = (x² - 3x + 6)(2x + 5) =
2x³ - 6x² + 12x + 5x² - 15x + 30 = 2x³ - x² - 3x + 30
3°) D(x) : C(x) = (2x³ - 5x + 7) : (x + 2)
| 2 + 0 - 5 | + 7
----------|----------------|--------
| - 4 + 8 | - 6
x = - 2 | |
----------|----------------|--------
| 2 - 4 + 3 | + 1
Cociente = T(x) = 2x² - 4x + 3
Residuo = S = 1
b)
[ P(x) + Q(x) ] . R(x) = [ 4x³ + 5x² + x + 1 + 2x³ + 5x ] . (x + 1) =
[ 6x³ + 5x² + 6x + 1 ] . (x + 1) =
6x⁴ + 5x³ + 6x² + x + 6x³ + 5x² + 6x + 1 = 6x⁴ + 11x³ + 11x² + 7x + 1
c)
P(x) : R(x) = (4x³ + 5x² + x + 1) : (x + 1)
| 4 + 5 + 1 | + 1
----------|----------------|--------
| - 4 - 1 | 0
x = - 1 | |
----------|----------------|--------
| 4 + 1 + 0 | + 1
Cociente = T(x) = 4x² + x
Residuo = S = 1
Comprobamos la solución utilizando el teorema del resto:
P(x) = 4x³ + 5x² + x + 1
R(x) = x + 1
El resto es el valor numérico de P(x) para el valor: x = - 1
P(- 1) = 4(- 1)³ + 5(- 1)² - 1 + 1 = 4(- 1) + 5(1) - 1 + 1 = - 4 + 5 - 1 + 1 = 1
Residuo = P(- 1) = S = 1