px · (x - 1) - x · (5x - 2) - p + 7 = 0
Explicación paso a paso:
Escribimos la ecuación correctamente:
(p - 1) · x² - px + 7 - 3x² = x² - 2x + p
Aplicamos propiedad distributiva:
px² - x² - px + 7 - 3x² = x² - 2x + p
px² - x² - px + 7 - 3x² - x² + 2x - p = 0
px² - px - 5x² + 2x - p + 7 = 0
Sacamos factores comunes:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
px · (x - 1) - x · (5x - 2) - p + 7 = 0
Explicación paso a paso:
Escribimos la ecuación correctamente:
(p - 1) · x² - px + 7 - 3x² = x² - 2x + p
Aplicamos propiedad distributiva:
px² - x² - px + 7 - 3x² = x² - 2x + p
px² - x² - px + 7 - 3x² - x² + 2x - p = 0
px² - px - 5x² + 2x - p + 7 = 0
Sacamos factores comunes:
px · (x - 1) - x · (5x - 2) - p + 7 = 0
De manera que esta sería la factorización de la expresión