Respuesta:
El área total del cono es 12,56 cm²
Explicación paso a paso:
Área total del cono:
AT = π × (Radio) × [(Radio) + (Generatriz)], donde π = 3,14
Calcular el área total del cono de revolución mostrado:
Datos:
Radio = 1
Altura = √8
Hallamos la generatriz del cono usando el Teorema de Pitágoras:
(Generatriz)² = (Radio)² + (Altura)²
g² = (1)² + (√8)²
g² = 1 + 8
g² = 9
g = √9
g = 3
Hallamos el área total del cono:
AT = π × r × (r + g)
AT = π × 1 × (1 + 3)
AT = π × 1 × (4)
AT = 4π
AT = 4 × 3,14
AT = 12,56
Por lo tanto, el área total del cono es 12,56 cm²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
El área total del cono es 12,56 cm²
Explicación paso a paso:
Área total del cono:
AT = π × (Radio) × [(Radio) + (Generatriz)], donde π = 3,14
Calcular el área total del cono de revolución mostrado:
Datos:
Radio = 1
Altura = √8
Hallamos la generatriz del cono usando el Teorema de Pitágoras:
(Generatriz)² = (Radio)² + (Altura)²
g² = (1)² + (√8)²
g² = 1 + 8
g² = 9
g = √9
g = 3
Hallamos el área total del cono:
AT = π × r × (r + g)
AT = π × 1 × (1 + 3)
AT = π × 1 × (4)
AT = 4π
AT = 4 × 3,14
AT = 12,56
Por lo tanto, el área total del cono es 12,56 cm²