[tex] {7}^{2Csc \: x + 3} = 1 \\ {7}^{2Csc \: x + 3} = {7}^{0} \\ 2Csc \: x + 3 = 0 \\ 2Csc \: x = - 3 \\ Csc \: x = - \frac{3}{2} [/tex]
[tex]A = Sec \: x + Tg \: x \\ A = \frac{ - 3 }{ \sqrt{5} } - \frac{2}{ \sqrt{5} } \\ A = \frac{ - 5}{ \sqrt{5} } \\ \boxed{A = - \sqrt{5} }[/tex]
[tex] {2}^{Tg \: θ} = 8 \\ {2}^{Tg \: θ} = {2}^{3} \\ Tg \: θ = 3[/tex]
[tex]D = 10 \: Sen \: θ \times Cos \: θ \\ D = 10 \times \frac{ - 3}{ \sqrt{10} } \times \frac{ - 1}{ \sqrt{10} } \\ D = \frac{10 \times - 3 \times - 1}{ \sqrt{10} \times \sqrt{10} } \\ D = \frac{30}{10} \\ \boxed{D = 3}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
☆ PROBLEMA 1
[tex] {7}^{2Csc \: x + 3} = 1 \\ {7}^{2Csc \: x + 3} = {7}^{0} \\ 2Csc \: x + 3 = 0 \\ 2Csc \: x = - 3 \\ Csc \: x = - \frac{3}{2} [/tex]
[tex]A = Sec \: x + Tg \: x \\ A = \frac{ - 3 }{ \sqrt{5} } - \frac{2}{ \sqrt{5} } \\ A = \frac{ - 5}{ \sqrt{5} } \\ \boxed{A = - \sqrt{5} }[/tex]
∴ RESPUESTA:
[tex] \boxed{c) \: - \sqrt{5} }[/tex]
☆ PROBLEMA 2
[tex] {2}^{Tg \: θ} = 8 \\ {2}^{Tg \: θ} = {2}^{3} \\ Tg \: θ = 3[/tex]
[tex]D = 10 \: Sen \: θ \times Cos \: θ \\ D = 10 \times \frac{ - 3}{ \sqrt{10} } \times \frac{ - 1}{ \sqrt{10} } \\ D = \frac{10 \times - 3 \times - 1}{ \sqrt{10} \times \sqrt{10} } \\ D = \frac{30}{10} \\ \boxed{D = 3}[/tex]
∴ RESPUESTA:
[tex] \boxed{c) \: 3}[/tex]