Respuesta:
Explicación paso a paso:
1. -2
2. -8
3. -15
4. 7
5. 6
6. -10
7. -13
8. 14
9. -6
10. -2
P1.- a + b y a · b son elementos de Z.
P2.- ∀a, b ∈ Z, a + b = b + a y a · b = b · a.
P3.- ∀a, b, c ∈ Z, (a + b) + c = a + (b + c),(a · b) · c = a · (b · c).
P4.- ∃ 0, 1 ∈ Z tal que ∀a ∈ Z, a + 0 = a, a · 1 = a.
P5.- ∀a, b, c ∈ Z, a · (b + c) = a · b + a · c.
P6.- ∀a ∈ Z ∃ − a ∈ Z unico ´ tal que a + (−a) = 0.
P7.- Si a 6= 0 y a · b = a · c =⇒ b = c.
A partir de las mismas pueden deducirse otras muchas propiedades que nos son familiares, como la
siguiente:
Ejemplo 1.- x · 0 = 0 para todo x ∈ Z.
x · (0 + 0) = x · 0, por la propiedad P4.
x · 0 + x · 0 = x · 0, por la propiedad P5.
−x · 0 + (x · 0 + x · 0) = −x · 0 + x · 0 = 0, por las propiedades P4 y P6.
(−x · 0 + x · 0) + x · 0 = 0 + x · 0 = x · 0 = 0, por las propiedades P2, P3, P4 y P6.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
Explicación paso a paso:
1. -2
2. -8
3. -15
4. 7
5. 6
6. -10
7. -13
8. 14
9. -6
10. -2
Respuesta:
P1.- a + b y a · b son elementos de Z.
P2.- ∀a, b ∈ Z, a + b = b + a y a · b = b · a.
P3.- ∀a, b, c ∈ Z, (a + b) + c = a + (b + c),(a · b) · c = a · (b · c).
P4.- ∃ 0, 1 ∈ Z tal que ∀a ∈ Z, a + 0 = a, a · 1 = a.
P5.- ∀a, b, c ∈ Z, a · (b + c) = a · b + a · c.
P6.- ∀a ∈ Z ∃ − a ∈ Z unico ´ tal que a + (−a) = 0.
P7.- Si a 6= 0 y a · b = a · c =⇒ b = c.
A partir de las mismas pueden deducirse otras muchas propiedades que nos son familiares, como la
siguiente:
Ejemplo 1.- x · 0 = 0 para todo x ∈ Z.
x · (0 + 0) = x · 0, por la propiedad P4.
x · 0 + x · 0 = x · 0, por la propiedad P5.
−x · 0 + (x · 0 + x · 0) = −x · 0 + x · 0 = 0, por las propiedades P4 y P6.
(−x · 0 + x · 0) + x · 0 = 0 + x · 0 = x · 0 = 0, por las propiedades P2, P3, P4 y P6.
Explicación paso a paso:
1. -2
2. -8
3. -15
4. 7
5. 6
6. -10
7. -13
8. 14
9. -6
10. -2