a) [tex]\frac{4^{2} }{2^{2} } :\frac{4^{5} }{2^{5} }[/tex] [tex]=[/tex]
[tex]\mathrm{Aplicar\:las\:propiedades\:de\:las\:fracciones}:\quad \frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]
[tex]=2^2\times \frac{1}{2^5}[/tex]
[tex]=\frac{2^2}{2^5}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \frac{x^a}{x^b}=\frac{1}{x^{b-a}}[/tex]
[tex]\frac{2^2}{2^5}=\frac{1}{2^{5-2}}[/tex]
[tex]=\frac{1}{2^{5-2}}[/tex] [tex]=\frac{1}{2^3}[/tex] [tex]=\frac{1}{8}[/tex]
b)
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \:a^0=1,\:\quad \:a\ne \:0[/tex]
[tex](\frac{1}{5000})^{0} =1[/tex]
c)
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]
[tex]=\left(\frac{3}{5}\right)^3\left(\frac{5}{3}\right)^2[/tex]
[tex]=\left(\frac{5}{3}\right)^2\frac{3^3}{5^3}[/tex]
[tex]=\frac{3^3}{5^3}\cdot \frac{5^2}{3^2}[/tex]
[tex]\mathrm{Multiplicar\:fracciones}:\quad \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}[/tex]
[tex]=\frac{3^3\cdot \:5^2}{5^3\cdot \:3^2}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]
[tex]\frac{3^3}{3^2}=3^{3-2}[/tex]
[tex]=\frac{5^2\cdot \:3^{3-2}}{5^3}[/tex]
[tex]=\frac{5^2\cdot \:3}{5^3}[/tex]
[tex]\frac{5^2}{5^3}=\frac{1}{5^{3-2}}[/tex]
[tex]=\frac{3}{5^{3-2}}[/tex]
[tex]=\frac{3}{5}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
a) [tex]\frac{4^{2} }{2^{2} } :\frac{4^{5} }{2^{5} }[/tex] [tex]=[/tex]
[tex]\mathrm{Aplicar\:las\:propiedades\:de\:las\:fracciones}:\quad \frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]
[tex]=2^2\times \frac{1}{2^5}[/tex]
[tex]=\frac{2^2}{2^5}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \frac{x^a}{x^b}=\frac{1}{x^{b-a}}[/tex]
[tex]\frac{2^2}{2^5}=\frac{1}{2^{5-2}}[/tex]
[tex]=\frac{1}{2^{5-2}}[/tex] [tex]=\frac{1}{2^3}[/tex] [tex]=\frac{1}{8}[/tex]
b)
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \:a^0=1,\:\quad \:a\ne \:0[/tex]
[tex](\frac{1}{5000})^{0} =1[/tex]
c)
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]
[tex]=\left(\frac{3}{5}\right)^3\left(\frac{5}{3}\right)^2[/tex]
[tex]=\left(\frac{5}{3}\right)^2\frac{3^3}{5^3}[/tex]
[tex]=\frac{3^3}{5^3}\cdot \frac{5^2}{3^2}[/tex]
[tex]\mathrm{Multiplicar\:fracciones}:\quad \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}[/tex]
[tex]=\frac{3^3\cdot \:5^2}{5^3\cdot \:3^2}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]
[tex]\frac{3^3}{3^2}=3^{3-2}[/tex]
[tex]=\frac{5^2\cdot \:3^{3-2}}{5^3}[/tex]
[tex]=\frac{5^2\cdot \:3}{5^3}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \frac{x^a}{x^b}=\frac{1}{x^{b-a}}[/tex]
[tex]\frac{5^2}{5^3}=\frac{1}{5^{3-2}}[/tex]
[tex]=\frac{3}{5^{3-2}}[/tex]
[tex]=\frac{3}{5}[/tex]