El factorial de un número es el producto de multiplicar desde el 1 hasta ese número.
[tex]\boxed{n!=(1)(2)(3)...(n-1)(n)}[/tex]
[tex]\boxed{1!=0!=1}[/tex]
[tex]\boxed{n!=(n)(n-1)!}[/tex]
[tex]\boxed{n!=(n)(n-1)(n-2)!}[/tex]
Resolvemos:
[tex]\boxed{E=\dfrac{(5!)!}{120!} +\dfrac{25!}{23!} -\dfrac{24!}{(4!)!} +\dfrac{(1!)!}{(0!)!} }\\\\\\\boxed{E=\dfrac{120!}{120!} +\dfrac{(25)(24)23!}{23!}- \dfrac{24!}{24!} +\dfrac{1!}{1!}} \\\\\\\boxed{E=1+(25)(24)-1+1}\\\\\boxed{E=1+600}\\\\\boxed{\boxed{E=601}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Factorial de un número
El factorial de un número es el producto de multiplicar desde el 1 hasta ese número.
[tex]\boxed{n!=(1)(2)(3)...(n-1)(n)}[/tex]
Propiedades:
[tex]\boxed{1!=0!=1}[/tex]
[tex]\boxed{n!=(n)(n-1)!}[/tex]
[tex]\boxed{n!=(n)(n-1)(n-2)!}[/tex]
Resolvemos:
[tex]\boxed{E=\dfrac{(5!)!}{120!} +\dfrac{25!}{23!} -\dfrac{24!}{(4!)!} +\dfrac{(1!)!}{(0!)!} }\\\\\\\boxed{E=\dfrac{120!}{120!} +\dfrac{(25)(24)23!}{23!}- \dfrac{24!}{24!} +\dfrac{1!}{1!}} \\\\\\\boxed{E=1+(25)(24)-1+1}\\\\\boxed{E=1+600}\\\\\boxed{\boxed{E=601}}[/tex]
Opción b).
Tareas similares: