Respuesta:
a) tgx
Explicación paso a paso:
[tex]p = \frac{ \sec(x) - \tan(x) - 1}{ \csc(x) - \cot(x) - 1} \\ p = \frac{ \frac{1}{ \cos(x) } - \frac{ \sin(x) }{ \cos(x) } - 1 }{ \frac{1}{ \sin(x) } - \frac{ \cos(x) }{ \sin(x) } - 1 } \\ p = \frac{ \frac{1 - \sin(x) - \cos(x) }{ \cos(x) } }{ \frac{1 - \cos(x) - \sin(x) }{ \sin(x) } } \\ p = \frac{ \sin(x) \times (1 - \sin(x) - \cos(x)) }{ \cos(x) \times (1 - \sin(x) - \cos(x)) } \\ p = \frac{ \sin(x) }{ \cos(x) } \\ p = \tan(x) [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
a) tgx
Explicación paso a paso:
[tex]p = \frac{ \sec(x) - \tan(x) - 1}{ \csc(x) - \cot(x) - 1} \\ p = \frac{ \frac{1}{ \cos(x) } - \frac{ \sin(x) }{ \cos(x) } - 1 }{ \frac{1}{ \sin(x) } - \frac{ \cos(x) }{ \sin(x) } - 1 } \\ p = \frac{ \frac{1 - \sin(x) - \cos(x) }{ \cos(x) } }{ \frac{1 - \cos(x) - \sin(x) }{ \sin(x) } } \\ p = \frac{ \sin(x) \times (1 - \sin(x) - \cos(x)) }{ \cos(x) \times (1 - \sin(x) - \cos(x)) } \\ p = \frac{ \sin(x) }{ \cos(x) } \\ p = \tan(x) [/tex]