Respuesta:
E = 0,774
Explicación paso a paso:
[tex] \sin(30) = \frac{1}{2}[/tex]
[tex] \tan(45) = 1[/tex]
Sabiendo esto:
[tex] \tan( \alpha ) = \frac{1}{2} + 1 = \frac{3}{2} [/tex]
[tex] \cot( \alpha ) = \frac{1}{ \tan( \alpha ) } = \frac{2}{3} = 0.667[/tex]
Calculamos el valor del ángulo alfa aplicando la propiedad del arcotangete o tg^-1 (alfa).
Si tg (alfa) = 3/2, tg^-1 (alfa) = 56,31°
Ahora:
[tex] \sqrt{3} \times \sin( \alpha ) = \sqrt{3} \times \sin( {56.31}^{o} ) [/tex]
[tex] \sqrt{3} \times 0.832 = 1.441[/tex]
Entonces:
E = 1,441 - 0,667
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
E = 0,774
Explicación paso a paso:
[tex] \sin(30) = \frac{1}{2}[/tex]
[tex] \tan(45) = 1[/tex]
Sabiendo esto:
[tex] \tan( \alpha ) = \frac{1}{2} + 1 = \frac{3}{2} [/tex]
[tex] \cot( \alpha ) = \frac{1}{ \tan( \alpha ) } = \frac{2}{3} = 0.667[/tex]
Calculamos el valor del ángulo alfa aplicando la propiedad del arcotangete o tg^-1 (alfa).
Si tg (alfa) = 3/2, tg^-1 (alfa) = 56,31°
Ahora:
[tex] \sqrt{3} \times \sin( \alpha ) = \sqrt{3} \times \sin( {56.31}^{o} ) [/tex]
[tex] \sqrt{3} \times 0.832 = 1.441[/tex]
Entonces:
E = 1,441 - 0,667
E = 0,774