Explicación paso a paso:
1.
[tex] {x}^{3} - 5 {x}^{2} + (2x - 6 + 2 {x}^{3} + 3 {x}^{2} - 4x + 3) + ( {x}^{2} - 2x + 1) \\ {x}^{3} - 5 {x}^{2} + 2x - 6 + 2 {x}^{3} + 3 {x}^{2} - 4x + 3 + {x}^{2} - 2x + 1 \\ 3 {x}^{3} - {x}^{2} - 4x - 2[/tex]
2.
[tex] {x}^{2} y + 2x {y}^{2} - {y}^{3} - ( - 2 {x}^{3} + 3 {x}^{2} y - 4x {y}^{2} + {y}^{3} ) \\ {x}^{2} y + 2x {y}^{2} - {y}^{3} + 2 {x}^{3} - 3 {x}^{2} y + 4x {y}^{2} - {y}^{3} \\ 2 {x}^{3} - 2 {x}^{2} y + 6x {y}^{2} - 2 {y}^{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
1.
[tex] {x}^{3} - 5 {x}^{2} + (2x - 6 + 2 {x}^{3} + 3 {x}^{2} - 4x + 3) + ( {x}^{2} - 2x + 1) \\ {x}^{3} - 5 {x}^{2} + 2x - 6 + 2 {x}^{3} + 3 {x}^{2} - 4x + 3 + {x}^{2} - 2x + 1 \\ 3 {x}^{3} - {x}^{2} - 4x - 2[/tex]
2.
[tex] {x}^{2} y + 2x {y}^{2} - {y}^{3} - ( - 2 {x}^{3} + 3 {x}^{2} y - 4x {y}^{2} + {y}^{3} ) \\ {x}^{2} y + 2x {y}^{2} - {y}^{3} + 2 {x}^{3} - 3 {x}^{2} y + 4x {y}^{2} - {y}^{3} \\ 2 {x}^{3} - 2 {x}^{2} y + 6x {y}^{2} - 2 {y}^{3} [/tex]