Respuesta:
[tex]= x^{5} -3x^{4} +9x^{3} -27x^{2} +81x-243[/tex]
Explicación:
[tex]\frac{x^{6} -729}{x+3} =[/tex]
Buscamos las raíces cúbicas de: [tex]x^{3}[/tex] y [tex]729.[/tex]
[tex]\sqrt[3]{x^{6} } = x^{2}[/tex] ; [tex]\sqrt[3]{729} = \sqrt[3]{3^{6} } = 3^{2} = 9.[/tex]
[tex]\frac{x^{6}-729 }{x+3} = \frac{(x^{2} -9)(x^{2} )^{2} +(x^{2} )(9)+(9)^{2} }{x+3} = \frac{(x+3)(x-3)(x^{4}+9x^{2} +81) }{x+3}[/tex]
[tex]\frac{x^{6}-729 }{x+3} = (x-3)(x^{4} +9x^{2} +81) = x^{5} +9x^{3} +81x-3x^{4} -27x^{2} -243[/tex]
[tex]x^{5} -3x^{4} +9x^{3} -27x^{2} +81x-243[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]= x^{5} -3x^{4} +9x^{3} -27x^{2} +81x-243[/tex]
Explicación:
[tex]\frac{x^{6} -729}{x+3} =[/tex]
Buscamos las raíces cúbicas de: [tex]x^{3}[/tex] y [tex]729.[/tex]
[tex]\sqrt[3]{x^{6} } = x^{2}[/tex] ; [tex]\sqrt[3]{729} = \sqrt[3]{3^{6} } = 3^{2} = 9.[/tex]
[tex]\frac{x^{6}-729 }{x+3} = \frac{(x^{2} -9)(x^{2} )^{2} +(x^{2} )(9)+(9)^{2} }{x+3} = \frac{(x+3)(x-3)(x^{4}+9x^{2} +81) }{x+3}[/tex]
[tex]\frac{x^{6}-729 }{x+3} = (x-3)(x^{4} +9x^{2} +81) = x^{5} +9x^{3} +81x-3x^{4} -27x^{2} -243[/tex]
Respuesta:
[tex]x^{5} -3x^{4} +9x^{3} -27x^{2} +81x-243[/tex]