La trayectoria y la velocidad son criterios que se utilizan para clasificar los movimientos. Según la forma de la trayectoria, un movimiento puede ser rectilíneo o curvilíneo. Cuando la trayectoria de un móvil es recta, la velocidad lleva siempre esa misma dirección
Explicación:
movimiento rectilineo uniformemente variado.:
Movimiento rectilíneo uniformemente variado:
Concepto de aceleración: es la variación de la velocidad en función del tiempo. Cuando la velocidad está cambiando se dice que hay aceleración y el movimiento se llama “variado” (porque varía la velocidad). En un movimiento variado, la aceleración media correspondiente a un intervalo de tiempo se define como el cociente entre la variación de velocidad experimentada por el móvil y el intervalo de tiempo empleado en esa variación. Se llama aceleración al cociente entre una variación de velocidad y el tiempo en que se produce: a = DV/Dt = (Velfinal-Velinicial)/(tfinal-tinicial).
La aceleración, magnitud vectorial: en el movimiento rectilíneo uniformemente acelerado, es un vector que tiene la misma dirección y el mismo sentido que el vector velocidad; en cambio, en el retardado, si bien su dirección coincide con la del vector velocidad, su sentido es el opuesto. Esto se refleja en:
1) La velocidad va disminuyendo (las variaciones de v son negativas)
2) En la fórmula de la velocidad en un instante dado, v=vo-a.t1, el signo de la aceleración, que es el que evidencia su sentido, es contrario del signo de la velocidad inicial. Así que podríamos decir que se llama aceleración al vector que tiene la dirección y el sentido de la variación de la velocidad y cuya medida es el cociente entre la medida de la variación de la velocidad y el tiempo en que se produjo.
Fórmulas de M.R.U.V.:
d = 1/2.a.t2 Esta fórmula sirve especialmente cuando el móvil parte del reposo aumentando la velocidad uniformemente (uniformemente acelerado)
d = Vi.t+1/2.a.t^2 Esta fórmula se usa particularmente cuando el movimiento es uniformemente variado partiendo de cierta velocidad inicial distinta de 0.
En el caso de no tener a como dato, podemos usar d=1/2.t(Vi+Vf)
En el caso de no tener t como dato, usamos: d=(Vf^2-Vi^2)/2a
Gráficos de M.R.U.V.:
Los gráficos de MRUV tienen la siguiente forma:

*En el gráfico x-t: La pendiente de la recta tangente en un punto de la parábola es la velocidad instantánea
*En el gráfico v-t: La pendiente de la recta es la aceleración y el área bajo esta recta es el desplazamiento
*En el gráfico a-t: El área bajo la recta es la variación de la velocidad
Ejemplo:

El caso de los sistemas de ecuaciones:
Cuando en un problema nos plantean como incógnita la aceleración y el tiempo, como ambas figuran en las mismas fórmulas, debemos trabajar con sistemas de fórmulas que, por ejemplo, resolvemos por sustitución. Para eso podemos recurrir a las ecuaciones ya vistas:
d=Vi.t+1/2.a.t^2
a=(Vf-Vi)/t
Ejemplo numérico: Un auto avanza a 20m/s, comienza a acelerar y luego de 10 segundos alcanza los 80m/s. Calcular qué distancia recorrió en dicho tiempo.
Datos: Vf=80m/s,t=10s,Vi=20m/s,d=?
d=20m/s.10s+1/2.a.(10s)^2 (nos falta a, entonces a continuación lo calculamos a través de la otra fórmula:)
a=(Vf-Vi)/t=(80m/s-20m/s)/10s=6m/s^2 ( y ahora reemplazamos en la ecuación que nos habías quedado inconclusa:)
d=20m/s.10s+1/2.(6m/s^2).100s^2=200m+300m=500m
Nota: en este ejemplo la inconclusa era d=Vi.t+1/2.a.t^2 y usamos a=(Vf-Vi)/t para completarla pero, dadas las condiciones
Respuesta:
Clacificacion del movimiento:
La trayectoria y la velocidad son criterios que se utilizan para clasificar los movimientos. Según la forma de la trayectoria, un movimiento puede ser rectilíneo o curvilíneo. Cuando la trayectoria de un móvil es recta, la velocidad lleva siempre esa misma dirección
Explicación:
movimiento rectilineo uniformemente variado.:
Movimiento rectilíneo uniformemente variado:
Concepto de aceleración: es la variación de la velocidad en función del tiempo. Cuando la velocidad está cambiando se dice que hay aceleración y el movimiento se llama “variado” (porque varía la velocidad). En un movimiento variado, la aceleración media correspondiente a un intervalo de tiempo se define como el cociente entre la variación de velocidad experimentada por el móvil y el intervalo de tiempo empleado en esa variación. Se llama aceleración al cociente entre una variación de velocidad y el tiempo en que se produce: a = DV/Dt = (Velfinal-Velinicial)/(tfinal-tinicial).
La aceleración, magnitud vectorial: en el movimiento rectilíneo uniformemente acelerado, es un vector que tiene la misma dirección y el mismo sentido que el vector velocidad; en cambio, en el retardado, si bien su dirección coincide con la del vector velocidad, su sentido es el opuesto. Esto se refleja en:
1) La velocidad va disminuyendo (las variaciones de v son negativas)
2) En la fórmula de la velocidad en un instante dado, v=vo-a.t1, el signo de la aceleración, que es el que evidencia su sentido, es contrario del signo de la velocidad inicial. Así que podríamos decir que se llama aceleración al vector que tiene la dirección y el sentido de la variación de la velocidad y cuya medida es el cociente entre la medida de la variación de la velocidad y el tiempo en que se produjo.
Fórmulas de M.R.U.V.:
d = 1/2.a.t2 Esta fórmula sirve especialmente cuando el móvil parte del reposo aumentando la velocidad uniformemente (uniformemente acelerado)
d = Vi.t+1/2.a.t^2 Esta fórmula se usa particularmente cuando el movimiento es uniformemente variado partiendo de cierta velocidad inicial distinta de 0.
En el caso de no tener a como dato, podemos usar d=1/2.t(Vi+Vf)
En el caso de no tener t como dato, usamos: d=(Vf^2-Vi^2)/2a
Gráficos de M.R.U.V.:
Los gráficos de MRUV tienen la siguiente forma:

*En el gráfico x-t: La pendiente de la recta tangente en un punto de la parábola es la velocidad instantánea
*En el gráfico v-t: La pendiente de la recta es la aceleración y el área bajo esta recta es el desplazamiento
*En el gráfico a-t: El área bajo la recta es la variación de la velocidad
Ejemplo:

El caso de los sistemas de ecuaciones:
Cuando en un problema nos plantean como incógnita la aceleración y el tiempo, como ambas figuran en las mismas fórmulas, debemos trabajar con sistemas de fórmulas que, por ejemplo, resolvemos por sustitución. Para eso podemos recurrir a las ecuaciones ya vistas:
d=Vi.t+1/2.a.t^2
a=(Vf-Vi)/t
Ejemplo numérico: Un auto avanza a 20m/s, comienza a acelerar y luego de 10 segundos alcanza los 80m/s. Calcular qué distancia recorrió en dicho tiempo.
Datos: Vf=80m/s,t=10s,Vi=20m/s,d=?
d=20m/s.10s+1/2.a.(10s)^2 (nos falta a, entonces a continuación lo calculamos a través de la otra fórmula:)
a=(Vf-Vi)/t=(80m/s-20m/s)/10s=6m/s^2 ( y ahora reemplazamos en la ecuación que nos habías quedado inconclusa:)
d=20m/s.10s+1/2.(6m/s^2).100s^2=200m+300m=500m
Nota: en este ejemplo la inconclusa era d=Vi.t+1/2.a.t^2 y usamos a=(Vf-Vi)/t para completarla pero, dadas las condiciones