Respuesta:
[tex]m=\frac{25}{9}[/tex]
Explicación paso a paso:
Por formula general, tenemos:
[tex]x=\frac{-b+-\sqrt{b^{2}-4ac} }{2a}=\frac{(m+5)+-\sqrt{(m+5)^{2}-32(m-2)}}{2(m-2)}=\frac{(m+5)+-\sqrt{m^2+10m+25-32m+64} }{2m-4}\\=\frac{(m+5)+-\sqrt{m^2-22m+89}}{2m-4}[/tex]
Sumo las dos raíces:
[tex]\frac{(m+5)+\sqrt{m^2-22m+89} }{2m-4} +\frac{(m+5)-\sqrt{m^2-22m+89} }{2m-4}=\frac{2(m+5)}{2m-4}[/tex]
Igualo a 10:
[tex]\frac{2m+10}{2m-4}=10\\2m+10=20m-40\\18m=50\\m=\frac{25}{9}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]m=\frac{25}{9}[/tex]
Explicación paso a paso:
Por formula general, tenemos:
[tex]x=\frac{-b+-\sqrt{b^{2}-4ac} }{2a}=\frac{(m+5)+-\sqrt{(m+5)^{2}-32(m-2)}}{2(m-2)}=\frac{(m+5)+-\sqrt{m^2+10m+25-32m+64} }{2m-4}\\=\frac{(m+5)+-\sqrt{m^2-22m+89}}{2m-4}[/tex]
Sumo las dos raíces:
[tex]\frac{(m+5)+\sqrt{m^2-22m+89} }{2m-4} +\frac{(m+5)-\sqrt{m^2-22m+89} }{2m-4}=\frac{2(m+5)}{2m-4}[/tex]
Igualo a 10:
[tex]\frac{2m+10}{2m-4}=10\\2m+10=20m-40\\18m=50\\m=\frac{25}{9}[/tex]