Respuesta:
Explicación paso a paso:
a) [tex]\sqrt{b^4} = b^{4/2} = b^2[/tex]
b) [tex](2-x)^{1/2} = \sqrt{2-x}[/tex]
c) [tex](-\frac{3}{5}) ^\frac{3}{5}= -(\frac{3^3}{5^3})^\frac{1}{5} = -(\frac{9}{125})^\frac{1}{5}[/tex]
d) [tex]\sqrt{(a^2+b^2)^3} = (a^2+b^2)^\frac{3}{2}[/tex]
espero te sirva
[tex] \sqrt{b {}^{4} } = {b}^{ \frac{4}{2} } \\ (2 - x) {}^{ \frac{1}{2} } = \sqrt[2]{2 - x} \\ ( - \frac{3}{4}) {}^{ \frac{3}{5} } = \sqrt[5]{( - \frac{3}{4} } ) {}^{3} \\ \sqrt{(a {}^{2} } - b {}^{2} ) {}^{3} = (a {}^{2} - b {}^{2} ) {}^{ \frac{3}{2} } [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
Explicación paso a paso:
a) [tex]\sqrt{b^4} = b^{4/2} = b^2[/tex]
b) [tex](2-x)^{1/2} = \sqrt{2-x}[/tex]
c) [tex](-\frac{3}{5}) ^\frac{3}{5}= -(\frac{3^3}{5^3})^\frac{1}{5} = -(\frac{9}{125})^\frac{1}{5}[/tex]
d) [tex]\sqrt{(a^2+b^2)^3} = (a^2+b^2)^\frac{3}{2}[/tex]
Respuesta:
espero te sirva
Explicación paso a paso:
[tex] \sqrt{b {}^{4} } = {b}^{ \frac{4}{2} } \\ (2 - x) {}^{ \frac{1}{2} } = \sqrt[2]{2 - x} \\ ( - \frac{3}{4}) {}^{ \frac{3}{5} } = \sqrt[5]{( - \frac{3}{4} } ) {}^{3} \\ \sqrt{(a {}^{2} } - b {}^{2} ) {}^{3} = (a {}^{2} - b {}^{2} ) {}^{ \frac{3}{2} } [/tex]