Respuesta:
Explicación paso a paso:
[tex]1+2+3+4+...+21[/tex]
[tex]Suma:[/tex]
[tex]1+2+3+...+n[/tex]
[tex]S = \frac{n(n+1)}{2}[/tex]
[tex]n = 21[/tex]
[tex]S = \frac{21(21+1)}{2} = \frac{21(22)}{2} = \frac{462}{2}[/tex]
[tex]S = 231[/tex]
RESPUESTA:
[tex]231[/tex]
__________________________________________________
[tex]10+14+18+22+...=1144[/tex]
PROGRESIÓN ARITMÉTICA:
[tex]a_{1} = 10; a_{2} = 14[/tex]
[tex]Diferencia: d = a_{2} -a_{1}= 14-10 = 4[/tex]
[tex]Suma: S = 1144[/tex]
Último término:
Fórmula:
[tex]a_{x} = a_{1} +(x-1 ) *d[/tex]
[tex]a_{x} =10+ (x-1 ) * 4[/tex]
[tex]S = \frac{x}{2} (a_{1} +a_{x} )[/tex]
[tex]1144= \frac{x}{2} [ 10+10+(x-1)*4 ][/tex]
[tex]1144 = \frac{x}{2} [ 20+4x-4][/tex]
[tex]2(1144)=x [16+4x], entonces : 2288 = 16x+4x^{2}[/tex]
[tex]4x^{2} +16x -2288=0[/tex]
Factorizando:
[tex]2 [ 2x^{2} +8x-1144] =0[/tex]
[tex](2x)^{2} +8(2x) - 2288= \frac{0}{2}[/tex]
[tex](2x+52)(2x-44) =0[/tex]
[tex]2x +52 = 0 ; 2x -44 = 0[/tex]
[tex]2x = -52[/tex]
[tex]x = -26[/tex]
[tex]2x = 44[/tex]
[tex]x = 22[/tex]
___________________________________________________-
PROGRESIÓN GEOMÉTRICAS INFINITAS:
[tex]S = 33 + 16.5 + 8.25 + ....[/tex]
[tex]Suma -infinita:[/tex]
[tex]Razon : r = \frac{a_{2} }{a_{1} }= \frac{33}{16.5} = 0.5[/tex]
[tex]S_{\alpha } =\frac{a_{1} }{1-r} = \frac{33}{1-0.5} =\frac{33}{0.5}[/tex]
[tex]S_{\alpha } = 66[/tex]
[tex]66[/tex]
______________________________________________________
[tex]S= \sqrt{36} + \sqrt{144} +\sqrt{324} +...+\sqrt{8100}[/tex]
[tex]S = 6+ 12+ 18+... + 90[/tex]
[tex]a _{1} = 6 ; a_{2} = 12[/tex]
[tex]a_{n} = 90[/tex]
[tex]Diferencia: d = 12 -6 = 6[/tex]
[tex]Suma: S = ?[/tex]
[tex]a_{n} = a_{1} + ( n-1 ) *d = 6 + (n-1 ) *6[/tex]
[tex]90 = 6 + 6n -6[/tex]
[tex]90= 6n[/tex]
[tex]n = \frac{90}{6} = 15[/tex]
[tex]S=\frac{n}{2} ( a_{1} +a_{n} )[/tex]
[tex]S = \frac{15}{2} ( 6 +90)[/tex]
[tex]S = (7.5 ) ( 96 ) = 720[/tex]
[tex]S = 720[/tex]
1+2+3+4+...+211+2+3+4+...+21
Suma:Suma:
1+2+3+...+n1+2+3+...+n
S = \frac{n(n+1)}{2}S=2n(n+1)
n = 21n=21
S = \frac{21(21+1)}{2} = \frac{21(22)}{2} = \frac{462}{2}S=221(21+1)=221(22)=2462
S = 231S=231
231231
10+14+18+22+...=114410+14+18+22+...=1144
a_{1} = 10; a_{2} = 14a1=10;a2=14
Diferencia: d = a_{2} -a_{1}= 14-10 = 4Diferencia:d=a2−a1=14−10=4
Suma: S = 1144Suma:S=1144
a_{x} = a_{1} +(x-1 ) *dax=a1+(x−1)∗d
a_{x} =10+ (x-1 ) * 4ax=10+(x−1)∗4
S = \frac{x}{2} (a_{1} +a_{x} )S=2x(a1+ax)
1144= \frac{x}{2} [ 10+10+(x-1)*4 ]1144=2x[10+10+(x−1)∗4]
1144 = \frac{x}{2} [ 20+4x-4]1144=2x[20+4x−4]
2(1144)=x [16+4x], entonces : 2288 = 16x+4x^{2}2(1144)=x[16+4x],entonces:2288=16x+4x2
4x^{2} +16x -2288=04x2+16x−2288=0
2 [ 2x^{2} +8x-1144] =02[2x2+8x−1144]=0
(2x)^{2} +8(2x) - 2288= \frac{0}{2}(2x)2+8(2x)−2288=20
(2x+52)(2x-44) =0(2x+52)(2x−44)=0
2x +52 = 0 ; 2x -44 = 02x+52=0;2x−44=0
2x = -522x=−52
x = -26x=−26
2x = 442x=44
x = 22x=22
S = 33 + 16.5 + 8.25 + ....S=33+16.5+8.25+....
Suma -infinita:Suma−infinita:
Razon : r = \frac{a_{2} }{a_{1} }= \frac{33}{16.5} = 0.5Razon:r=
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
Explicación paso a paso:
[tex]1+2+3+4+...+21[/tex]
[tex]Suma:[/tex]
[tex]1+2+3+...+n[/tex]
[tex]S = \frac{n(n+1)}{2}[/tex]
[tex]n = 21[/tex]
[tex]S = \frac{21(21+1)}{2} = \frac{21(22)}{2} = \frac{462}{2}[/tex]
[tex]S = 231[/tex]
RESPUESTA:
[tex]231[/tex]
__________________________________________________
[tex]10+14+18+22+...=1144[/tex]
PROGRESIÓN ARITMÉTICA:
[tex]a_{1} = 10; a_{2} = 14[/tex]
[tex]Diferencia: d = a_{2} -a_{1}= 14-10 = 4[/tex]
[tex]Suma: S = 1144[/tex]
Último término:
Fórmula:
[tex]a_{x} = a_{1} +(x-1 ) *d[/tex]
[tex]a_{x} =10+ (x-1 ) * 4[/tex]
Fórmula:
[tex]S = \frac{x}{2} (a_{1} +a_{x} )[/tex]
[tex]1144= \frac{x}{2} [ 10+10+(x-1)*4 ][/tex]
[tex]1144 = \frac{x}{2} [ 20+4x-4][/tex]
[tex]2(1144)=x [16+4x], entonces : 2288 = 16x+4x^{2}[/tex]
[tex]4x^{2} +16x -2288=0[/tex]
Factorizando:
[tex]2 [ 2x^{2} +8x-1144] =0[/tex]
[tex](2x)^{2} +8(2x) - 2288= \frac{0}{2}[/tex]
[tex](2x+52)(2x-44) =0[/tex]
[tex]2x +52 = 0 ; 2x -44 = 0[/tex]
[tex]2x = -52[/tex]
[tex]x = -26[/tex]
[tex]2x = 44[/tex]
[tex]x = 22[/tex]
RESPUESTA:
[tex]x = 22[/tex]
___________________________________________________-
PROGRESIÓN GEOMÉTRICAS INFINITAS:
[tex]S = 33 + 16.5 + 8.25 + ....[/tex]
[tex]Suma -infinita:[/tex]
[tex]Razon : r = \frac{a_{2} }{a_{1} }= \frac{33}{16.5} = 0.5[/tex]
[tex]S_{\alpha } =\frac{a_{1} }{1-r} = \frac{33}{1-0.5} =\frac{33}{0.5}[/tex]
[tex]S_{\alpha } = 66[/tex]
RESPUESTA:
[tex]66[/tex]
______________________________________________________
PROGRESIÓN ARITMÉTICA:
[tex]S= \sqrt{36} + \sqrt{144} +\sqrt{324} +...+\sqrt{8100}[/tex]
[tex]S = 6+ 12+ 18+... + 90[/tex]
[tex]a _{1} = 6 ; a_{2} = 12[/tex]
[tex]a_{n} = 90[/tex]
[tex]Diferencia: d = 12 -6 = 6[/tex]
[tex]Suma: S = ?[/tex]
[tex]a_{n} = a_{1} + ( n-1 ) *d = 6 + (n-1 ) *6[/tex]
[tex]90 = 6 + 6n -6[/tex]
[tex]90= 6n[/tex]
[tex]n = \frac{90}{6} = 15[/tex]
[tex]S=\frac{n}{2} ( a_{1} +a_{n} )[/tex]
[tex]S = \frac{15}{2} ( 6 +90)[/tex]
[tex]S = (7.5 ) ( 96 ) = 720[/tex]
RESPUESTA:
[tex]S = 720[/tex]
Respuesta:
Explicación paso a paso:
1+2+3+4+...+211+2+3+4+...+21
Suma:Suma:
1+2+3+...+n1+2+3+...+n
S = \frac{n(n+1)}{2}S=2n(n+1)
n = 21n=21
S = \frac{21(21+1)}{2} = \frac{21(22)}{2} = \frac{462}{2}S=221(21+1)=221(22)=2462
S = 231S=231
RESPUESTA:
231231
__________________________________________________
10+14+18+22+...=114410+14+18+22+...=1144
PROGRESIÓN ARITMÉTICA:
a_{1} = 10; a_{2} = 14a1=10;a2=14
Diferencia: d = a_{2} -a_{1}= 14-10 = 4Diferencia:d=a2−a1=14−10=4
Suma: S = 1144Suma:S=1144
Último término:
Fórmula:
a_{x} = a_{1} +(x-1 ) *dax=a1+(x−1)∗d
a_{x} =10+ (x-1 ) * 4ax=10+(x−1)∗4
Fórmula:
S = \frac{x}{2} (a_{1} +a_{x} )S=2x(a1+ax)
1144= \frac{x}{2} [ 10+10+(x-1)*4 ]1144=2x[10+10+(x−1)∗4]
1144 = \frac{x}{2} [ 20+4x-4]1144=2x[20+4x−4]
2(1144)=x [16+4x], entonces : 2288 = 16x+4x^{2}2(1144)=x[16+4x],entonces:2288=16x+4x2
4x^{2} +16x -2288=04x2+16x−2288=0
Factorizando:
2 [ 2x^{2} +8x-1144] =02[2x2+8x−1144]=0
(2x)^{2} +8(2x) - 2288= \frac{0}{2}(2x)2+8(2x)−2288=20
(2x+52)(2x-44) =0(2x+52)(2x−44)=0
2x +52 = 0 ; 2x -44 = 02x+52=0;2x−44=0
2x = -522x=−52
x = -26x=−26
2x = 442x=44
x = 22x=22
RESPUESTA:
x = 22x=22
___________________________________________________-
PROGRESIÓN GEOMÉTRICAS INFINITAS:
S = 33 + 16.5 + 8.25 + ....S=33+16.5+8.25+....
Suma -infinita:Suma−infinita:
Razon : r = \frac{a_{2} }{a_{1} }= \frac{33}{16.5} = 0.5Razon:r=