Respuesta:
A_
125,43
+ 32,068
_________
4461 1
a) 125,43 + 32,068 = 157.498
[tex]\frac{\begin{matrix}\space\space&\textbf{\space\space}&\space\space\space\space\\ \space\space&\textbf{1}&2&5&.&4&3&0\\ +&\textbf{0}&3&2&.&0&6&8\end{matrix}}{\begin{matrix}\space\space&&\textbf{1}&5&7&.&4&9&8\end{matrix}}[/tex]
b) 25,78 - 6,321 = 19.459
[tex]\frac{\begin{matrix}\space\space\textbf\space\space\\ \space\space&2&\textbf{5}&.&7&8&0\\ +&0&\textbf{6}&.&3&2&1\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{1}&9&.&4&5&9\end{matrix}}[/tex]
c) 0,0047 + 1,40522 = 1.40992
[tex]\frac{\begin{matrix}\space\space&\textbf\space\space\\ \space\space&\textbf{0}&.&0&0&4&7&0\\ +&\textbf{1}&.&4&0&5&2&2\end{matrix}}{\begin{matrix}\space&\space&\textbf{1}&.&4&0&9&9&2\end{matrix}}[/tex]
d) 0,0024 - 0,024 = -0.0216
[tex]\frac{\begin{matrix}\space\space\textbf\space\space\\ \space\space&0&\textbf{.}&0&0&2&4\\ +&0&\textbf{.}&0&2&4&0\end{matrix}}{\begin{matrix}\space\space\space\space-&\textbf{0}&.&0&2&1&6\end{matrix}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
A_
125,43
+ 32,068
_________
4461 1
2) Calcula las operaciones en forma horizontal.
a) 125,43 + 32,068 = 157.498
[tex]\frac{\begin{matrix}\space\space&\textbf{\space\space}&\space\space\space\space\\ \space\space&\textbf{1}&2&5&.&4&3&0\\ +&\textbf{0}&3&2&.&0&6&8\end{matrix}}{\begin{matrix}\space\space&&\textbf{1}&5&7&.&4&9&8\end{matrix}}[/tex]
b) 25,78 - 6,321 = 19.459
[tex]\frac{\begin{matrix}\space\space\textbf\space\space\\ \space\space&2&\textbf{5}&.&7&8&0\\ +&0&\textbf{6}&.&3&2&1\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{1}&9&.&4&5&9\end{matrix}}[/tex]
c) 0,0047 + 1,40522 = 1.40992
[tex]\frac{\begin{matrix}\space\space&\textbf\space\space\\ \space\space&\textbf{0}&.&0&0&4&7&0\\ +&\textbf{1}&.&4&0&5&2&2\end{matrix}}{\begin{matrix}\space&\space&\textbf{1}&.&4&0&9&9&2\end{matrix}}[/tex]
d) 0,0024 - 0,024 = -0.0216
[tex]\frac{\begin{matrix}\space\space\textbf\space\space\\ \space\space&0&\textbf{.}&0&0&2&4\\ +&0&\textbf{.}&0&2&4&0\end{matrix}}{\begin{matrix}\space\space\space\space-&\textbf{0}&.&0&2&1&6\end{matrix}}[/tex]