Respuesta:
de que se trata
Explicación paso a paso:
explica ggggg
09.
[tex]x^{2} +3x+7=0[/tex]
Por la fórmula general:
[tex]a = 1 ; b = 3 ; c = 7.[/tex]
[tex]x = \frac{-b\frac{+}{} \sqrt{b^{2}-4ac } }{2a} = \frac{-3\frac{+}{} \sqrt{3^{2} -4(1)(7)} }{2(1)} =\frac{-3\frac{+}{}\sqrt{9-28} }{2}[/tex]
[tex]x = \frac{-3\frac{+}{}\sqrt{-19} }{2}[/tex]
[tex]a = \frac{-3+\sqrt{-19} }{2}[/tex] ; [tex]b = \frac{-3-\sqrt{-19} }{2}[/tex]
[tex]a^{2} + b^{2} =(\frac{-3+\sqrt{-19} }{2} )^{2} + (\frac{-3-\sqrt{-19} }{2} )^{2}[/tex]
[tex]= \frac{(-3)^{2}+2(-3)(\sqrt{-19} )+(\sqrt{-19} )^{2} }{4} + \frac{(-3)^{2}-2(-3)(\sqrt{-19} )+(\sqrt{-19} )^{2} }{4}[/tex]
[tex]= \frac{9-6\sqrt{-19}-19+9+6\sqrt{-19} -19 }{4} = \frac{18-38}{4} = \frac{-20}{4}[/tex]
[tex]= -5[/tex]
RESPUESTA:
[tex]-5[/tex]
_____________________________________________________
10.
Raíces:
[tex]x_{1} = \sqrt{3} +\sqrt{2}[/tex] ; [tex]x_{2} = \sqrt{3} -\sqrt{2}[/tex]
[tex]Ecuacion:[/tex]
[tex]x^{2} -(x_{1} +x_{2} )x + (x_{1}*x_{2} )=0[/tex]
[tex]x^{2} -(\sqrt{3} +\sqrt{2} +\sqrt{3} -\sqrt{2} )x+ [(\sqrt{3} +\sqrt{2} )*(\sqrt{3} -\sqrt{2}) =0[/tex]
[tex]x^{2} -2\sqrt{3} x + [ (\sqrt{3} )^{2} -(\sqrt{2} )^{2} ] =0[/tex]
[tex]x^{2} -2\sqrt{3} x+ (3-2) = 0[/tex]
[tex]x^{2} -2\sqrt{3} x+1 = 0[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
de que se trata
Explicación paso a paso:
explica ggggg
Respuesta:
Explicación paso a paso:
09.
[tex]x^{2} +3x+7=0[/tex]
Por la fórmula general:
[tex]a = 1 ; b = 3 ; c = 7.[/tex]
[tex]x = \frac{-b\frac{+}{} \sqrt{b^{2}-4ac } }{2a} = \frac{-3\frac{+}{} \sqrt{3^{2} -4(1)(7)} }{2(1)} =\frac{-3\frac{+}{}\sqrt{9-28} }{2}[/tex]
[tex]x = \frac{-3\frac{+}{}\sqrt{-19} }{2}[/tex]
[tex]a = \frac{-3+\sqrt{-19} }{2}[/tex] ; [tex]b = \frac{-3-\sqrt{-19} }{2}[/tex]
[tex]a^{2} + b^{2} =(\frac{-3+\sqrt{-19} }{2} )^{2} + (\frac{-3-\sqrt{-19} }{2} )^{2}[/tex]
[tex]= \frac{(-3)^{2}+2(-3)(\sqrt{-19} )+(\sqrt{-19} )^{2} }{4} + \frac{(-3)^{2}-2(-3)(\sqrt{-19} )+(\sqrt{-19} )^{2} }{4}[/tex]
[tex]= \frac{9-6\sqrt{-19}-19+9+6\sqrt{-19} -19 }{4} = \frac{18-38}{4} = \frac{-20}{4}[/tex]
[tex]= -5[/tex]
RESPUESTA:
[tex]-5[/tex]
_____________________________________________________
10.
Raíces:
[tex]x_{1} = \sqrt{3} +\sqrt{2}[/tex] ; [tex]x_{2} = \sqrt{3} -\sqrt{2}[/tex]
[tex]Ecuacion:[/tex]
[tex]x^{2} -(x_{1} +x_{2} )x + (x_{1}*x_{2} )=0[/tex]
[tex]x^{2} -(\sqrt{3} +\sqrt{2} +\sqrt{3} -\sqrt{2} )x+ [(\sqrt{3} +\sqrt{2} )*(\sqrt{3} -\sqrt{2}) =0[/tex]
[tex]x^{2} -2\sqrt{3} x + [ (\sqrt{3} )^{2} -(\sqrt{2} )^{2} ] =0[/tex]
[tex]x^{2} -2\sqrt{3} x+ (3-2) = 0[/tex]
RESPUESTA:
[tex]x^{2} -2\sqrt{3} x+1 = 0[/tex]