Respuesta:
El valor de P es 1
Explicación paso a paso:
Si : sen (∝ - 20) = cos (θ - 30); ∝ y θ son angulos agudos, calcular: [tex]P = \frac{tag(\frac{\alpha + \theta}{4}) + ctg(\frac{\alpha + \theta}{2} )}{ctg(\alpha + \theta -85) + tg(\alpha + \theta -120)}[/tex]
Como sen (∝ - 20) = cos (θ - 30) son ángulos complementario, entonces:
∝ - 20 + θ - 30 = 90
∝ + θ - 50 = 90
∝ + θ = 90 + 50
∝ + θ = 140
Resolvamos P:
[tex]P = \frac{tag(\frac{\alpha + \theta}{4}) + ctg(\frac{\alpha + \theta}{2} )}{ctg(\alpha + \theta -85) + tg(\alpha + \theta -120)} \\\\P = \frac{tag(\frac{140}{4}) + ctg(\frac{140}{2} )}{ctg(140 -85) + tg(140 -120)}\\\\P = \frac{tag(35) + ctg(70 )}{ctg(55) + tg(20)}\\\\P = \frac{ctg(55) + tg(20)}{ctg(55) + tg(20)}\\\\P = 1[/tex]
Por lo tanto, el valor de P es 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
El valor de P es 1
Explicación paso a paso:
Si : sen (∝ - 20) = cos (θ - 30); ∝ y θ son angulos agudos, calcular: [tex]P = \frac{tag(\frac{\alpha + \theta}{4}) + ctg(\frac{\alpha + \theta}{2} )}{ctg(\alpha + \theta -85) + tg(\alpha + \theta -120)}[/tex]
Como sen (∝ - 20) = cos (θ - 30) son ángulos complementario, entonces:
∝ - 20 + θ - 30 = 90
∝ + θ - 50 = 90
∝ + θ = 90 + 50
∝ + θ = 140
Resolvamos P:
[tex]P = \frac{tag(\frac{\alpha + \theta}{4}) + ctg(\frac{\alpha + \theta}{2} )}{ctg(\alpha + \theta -85) + tg(\alpha + \theta -120)} \\\\P = \frac{tag(\frac{140}{4}) + ctg(\frac{140}{2} )}{ctg(140 -85) + tg(140 -120)}\\\\P = \frac{tag(35) + ctg(70 )}{ctg(55) + tg(20)}\\\\P = \frac{ctg(55) + tg(20)}{ctg(55) + tg(20)}\\\\P = 1[/tex]
Por lo tanto, el valor de P es 1