Explicación paso a paso:
[tex]a = \sqrt{( - 36) \div ( - 4)} + \sqrt[3]{( - 16) \div (2)} = \sqrt{9} + \sqrt[3]{ - 8} = 3 + \sqrt[3]{ {( - 2)}^{3} } = 3 + ( - 2) = 3 - 2 = 1 \\ b = \sqrt{ \frac{64}{4} } - \sqrt[3]{( - 250) \div 2} = \sqrt{16} - \sqrt[3]{( - 125)} = 4 - \sqrt[3]{ {( - 5)}^{3} } = 4 - ( - 5) = 4 + 5 = 9 \\ c = \sqrt{( - 100) \div ( - 4)} \times \sqrt[3]{ \frac{ - 64}{ - 1} } = \sqrt{25} \times \sqrt{64} = 5 \times 8 =40 \\ a - b + c = 1 - 9 + 40 = 32 [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
[tex]a = \sqrt{( - 36) \div ( - 4)} + \sqrt[3]{( - 16) \div (2)} = \sqrt{9} + \sqrt[3]{ - 8} = 3 + \sqrt[3]{ {( - 2)}^{3} } = 3 + ( - 2) = 3 - 2 = 1 \\ b = \sqrt{ \frac{64}{4} } - \sqrt[3]{( - 250) \div 2} = \sqrt{16} - \sqrt[3]{( - 125)} = 4 - \sqrt[3]{ {( - 5)}^{3} } = 4 - ( - 5) = 4 + 5 = 9 \\ c = \sqrt{( - 100) \div ( - 4)} \times \sqrt[3]{ \frac{ - 64}{ - 1} } = \sqrt{25} \times \sqrt{64} = 5 \times 8 =40 \\ a - b + c = 1 - 9 + 40 = 32 [/tex]