Respuesta:
120
Explicación paso a paso:
Establecemos las condiciones del ejercicio:
Sí entran todos los elementos. De 5 dígitos entran sólo 3
Sí importa el orden. Son números distintos el 123, 231, 321
No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes
2 Se trata de una Permutación por lo que utilizamos la fórmula:
_{n}P_{r}=\cfrac{n!}{(n-r)!}
n=5\; \; \; \; \; r=5
3 Sustituimos y resolvemos:
_{5}P_{5}=\cfrac{5!}{(5-5)!}=5!=5\cdot 4\cdot 3\cdot 2\cdot 1=120
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
120
Explicación paso a paso:
Establecemos las condiciones del ejercicio:
Sí entran todos los elementos. De 5 dígitos entran sólo 3
Sí importa el orden. Son números distintos el 123, 231, 321
No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes
2 Se trata de una Permutación por lo que utilizamos la fórmula:
_{n}P_{r}=\cfrac{n!}{(n-r)!}
n=5\; \; \; \; \; r=5
3 Sustituimos y resolvemos:
_{5}P_{5}=\cfrac{5!}{(5-5)!}=5!=5\cdot 4\cdot 3\cdot 2\cdot 1=120