Explicación:
[tex]y = \csc {}^{ - 1} ( \frac{7}{x} ) [/tex]
Interseccion En y
[tex]y = \csc {}^{ - 1} ( \frac{7}{0} ) [/tex]
Cualquier Expresión Dividida Entre 0 Es Indefinida
No Hay Interseccion En y
Dominio : [ - 7, 0 ) U ( 0, 7 ]
x Pertenece [ - 7, 7 ] Distinto De {0}
Su Derivada
[tex] \frac{d}{dx} = \csc {}^{ - 1} ( \frac{7}{x} ) [/tex]
[tex] \frac{d}{dx} \csc {}^{ - 1} \times \frac{d}{dx} ( \frac{7}{x} ) [/tex]
[tex] - \frac{{1} }{ {( \frac{7}{x} ) {}^{2} } \times \sqrt{1 - \frac{1}{( \frac{7}{x} ) {}^{2} } } } \times ( - 7 \times \frac{1}{x {}^{2} } )[/tex]
Simplificamos
[tex] = \frac{1}{ \sqrt{49 - x {}^{2} } } [/tex]
Espero Te Sirva, Saludos JB.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Explicación:
[tex]y = \csc {}^{ - 1} ( \frac{7}{x} ) [/tex]
Interseccion En y
[tex]y = \csc {}^{ - 1} ( \frac{7}{0} ) [/tex]
Cualquier Expresión Dividida Entre 0 Es Indefinida
No Hay Interseccion En y
Dominio : [ - 7, 0 ) U ( 0, 7 ]
x Pertenece [ - 7, 7 ] Distinto De {0}
Su Derivada
[tex]y = \csc {}^{ - 1} ( \frac{7}{x} ) [/tex]
[tex] \frac{d}{dx} = \csc {}^{ - 1} ( \frac{7}{x} ) [/tex]
[tex] \frac{d}{dx} \csc {}^{ - 1} \times \frac{d}{dx} ( \frac{7}{x} ) [/tex]
[tex] - \frac{{1} }{ {( \frac{7}{x} ) {}^{2} } \times \sqrt{1 - \frac{1}{( \frac{7}{x} ) {}^{2} } } } \times ( - 7 \times \frac{1}{x {}^{2} } )[/tex]
Simplificamos
[tex] = \frac{1}{ \sqrt{49 - x {}^{2} } } [/tex]
Espero Te Sirva, Saludos JB.