Explicación paso a paso:
[tex] \frac{(x + 3)}{(x - 2)} - \frac{(x - 4)}{(x + 3)} \\ \frac{(x + 3)(x + 3) - (x - 4)(x - 2)}{(x - 2)(x + 3)} \\ \frac{ {x}^{2} + 3x + 3x + 9 - ( {x}^{2} - 2x - 4x + 8) }{ {x}^{2} + 3x - 2x - 6} \\ \frac{ {x}^{2} + 6x + 9 - ( {x}^{2} - 6x + 8) }{ {x}^{2} + x - 6 } \\ \frac{ {x}^{2} + 6x + 9 - {x}^{2} + 6x - 8}{ {x}^{2} + x - 6 } \\ \frac{12x + 1}{ {x}^{2} + x - 6 } \\ \frac{12x + 1}{(x + 3)(x - 2)} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
[tex] \frac{(x + 3)}{(x - 2)} - \frac{(x - 4)}{(x + 3)} \\ \frac{(x + 3)(x + 3) - (x - 4)(x - 2)}{(x - 2)(x + 3)} \\ \frac{ {x}^{2} + 3x + 3x + 9 - ( {x}^{2} - 2x - 4x + 8) }{ {x}^{2} + 3x - 2x - 6} \\ \frac{ {x}^{2} + 6x + 9 - ( {x}^{2} - 6x + 8) }{ {x}^{2} + x - 6 } \\ \frac{ {x}^{2} + 6x + 9 - {x}^{2} + 6x - 8}{ {x}^{2} + x - 6 } \\ \frac{12x + 1}{ {x}^{2} + x - 6 } \\ \frac{12x + 1}{(x + 3)(x - 2)} [/tex]