1)
[tex]{x}^{2} - 16 {4}^{2} = ( \times -4x)( \times - 4x) \\ {x}^{2} - (4y {)}^{2} [/tex]
2)
[tex]9 {x}^{2} - 4 {y}^{2} = (3x - 2y)(3y + 2y) \\ (3x {)}^{2} - (2y {)}^{2} [/tex]
3)
[tex]4 {x}^{2} - 81 {y}^{4} = (2x - 9 {y}^{2} )(2x + 9 {y}^{2} ) \\ (2x {)}^{2} - (9y2 {)}^{2} [/tex]
4)
[tex] {x}^{2} - 121 = ( \times + 11)( \times - 11) \\ {x}^{2} - 1 {1}^{2} [/tex]
5)
[tex] {x}^{4} - 25 {y}^{6} = ( {x}^{2} - 5 {y}^{3} )( {x}^{2} + 5 {y}^{3} ) \\ {x}^{2} - (5 {y}^{3} {)}^{2} [/tex]
TheTeddyBear.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
1)
[tex]{x}^{2} - 16 {4}^{2} = ( \times -4x)( \times - 4x) \\ {x}^{2} - (4y {)}^{2} [/tex]
2)
[tex]9 {x}^{2} - 4 {y}^{2} = (3x - 2y)(3y + 2y) \\ (3x {)}^{2} - (2y {)}^{2} [/tex]
3)
[tex]4 {x}^{2} - 81 {y}^{4} = (2x - 9 {y}^{2} )(2x + 9 {y}^{2} ) \\ (2x {)}^{2} - (9y2 {)}^{2} [/tex]
4)
[tex] {x}^{2} - 121 = ( \times + 11)( \times - 11) \\ {x}^{2} - 1 {1}^{2} [/tex]
5)
[tex] {x}^{4} - 25 {y}^{6} = ( {x}^{2} - 5 {y}^{3} )( {x}^{2} + 5 {y}^{3} ) \\ {x}^{2} - (5 {y}^{3} {)}^{2} [/tex]
TheTeddyBear.