Respuesta:
d.)cotx
Explicación paso a paso:
cosx - cosx + cotx
cotx
Es la d [tex]\cot (x)[/tex]
[tex]E=\sin \left(\dfrac{\pi }{2}+x \right)+ \cos(\pi +x)+ \tan \left(\dfrac{3 \pi }{2}-x \right)\\\\E=\cos (x)+ -\cos(x)+\dfrac{\sin \left(\dfrac{3 \pi }{2}-x \right)}{\cos \left(\dfrac{3 \pi }{2}-x \right)} \\\\E=\cos (x)-\cos(x)+\dfrac{-\cos (x)}{-sen(x)} \\\\E=\dfrac{cos(x)}{sen(x)}\\\\E=\cot (x)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
d.)cotx
Explicación paso a paso:
cosx - cosx + cotx
cotx
Verified answer
Respuesta:
Es la d [tex]\cot (x)[/tex]
Explicación paso a paso:
[tex]E=\sin \left(\dfrac{\pi }{2}+x \right)+ \cos(\pi +x)+ \tan \left(\dfrac{3 \pi }{2}-x \right)\\\\E=\cos (x)+ -\cos(x)+\dfrac{\sin \left(\dfrac{3 \pi }{2}-x \right)}{\cos \left(\dfrac{3 \pi }{2}-x \right)} \\\\E=\cos (x)-\cos(x)+\dfrac{-\cos (x)}{-sen(x)} \\\\E=\dfrac{cos(x)}{sen(x)}\\\\E=\cot (x)[/tex]
Es la d [tex]\cot (x)[/tex]