3. 3x²+x-3 = 0 => akar : α dan β
α+β = -b/a
= -1/3
αβ = c/a
= (-3)/3 = -1
Akar persamaan yang baru :
c = 2+(1/(α+1)) , d = 2+(1/(β+1))
rumus PK baru :
x² - (c+d)x + c.d = 0
c+d = 2+(1/(α+1)) + 2+(1/(β+1))
= 4 + ( (β+1)+(α+1) )/( (α+1)(β+1) )
= 4 + (2+(α+β) )/( αβ+1+(α+β) ) <= α+β = -1/3 , αβ = -1
= 4 + (2 - 1/3 )/( -1+1 - 1/3 )
= 4 + (5/3)/(-1/3)
= 4 - 5
c+d = -1
cd = (2+(1/(α+1)) ).(2+(1/(β+1)) )
= 4 + 2.(1/(β+1)) + 2.(1/(α+1)) + (1/(α+1)).(1/(β+1))
= 4 + 2.( (1/(β+1)) + (1/(α+1)) ) + 1/( (α+1).(β+1) )
= 4 + 2.( ( (α+1)+(β+1) )/( (α+1).(β+1) ) ) + 1/( (α+1).(1/(β+1) ) <= (α+1).(β+1) = -1/3 , (α+1)+(β+1) = 5/3
= 4 + 2.(5/3)/(-1/3) + 1/(-1/3)
= 4 + 2.(-5) - 3
= 4 - 10 - 3
c.d = -11
Persamaannya adalah :
x² - (-1)x + (-11) = 0
x² + x - 11 = 0 (A)
4. x² - (3p-2)x + 2p+8 = 0 => akarnya x₁ dan x₂
x₁ + x₂ = - (-(3p-2))/1
x₁ + x₂ = 3p - 2
x₁.x₂ = (2p+8)/1 = 2p+8
x₁,p,x₂ membentuk barisan geometri
r = p/x₁ = x₂/p
p² = x₁.x₂
p² = 2p+8
p²-2p-8 = 0
(p-4)(p+2) = 0
p = 4 atau -2
di soal dibilang bahwa p positif, maka :
p = 4
x₁ + x₂ = 3p - 2 <= p = 4
x₁ + x₂ = 3.4 - 2
x₁+x₂ = 10
x₁+x₂+p = 10 + 4 = 14 (E)
5. x²-25x+c = 0 => akar : a dan b (keduanya prima , b > a)
a+b = -(-25) = 25
ab = c
bilangan prima : 2,3,5,7,11,13,17,19,23,29,31,33, dan seterusnya
diantara bilangan diatas yang kalau ditambah menghasilkan 25 adalah 2+23 , berarti a dan b adalah 2 dan 23
a = 2 , b = 23 (karena b > a)
berarti ab = c = 2.23 = 46
c = 46
3a-b+c = 3.2 - 23 + 46
= 6 + 23
= 29 (C)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
3. 3x²+x-3 = 0 => akar : α dan β
α+β = -b/a
= -1/3
αβ = c/a
= (-3)/3 = -1
Akar persamaan yang baru :
c = 2+(1/(α+1)) , d = 2+(1/(β+1))
rumus PK baru :
x² - (c+d)x + c.d = 0
c+d = 2+(1/(α+1)) + 2+(1/(β+1))
= 4 + ( (β+1)+(α+1) )/( (α+1)(β+1) )
= 4 + (2+(α+β) )/( αβ+1+(α+β) ) <= α+β = -1/3 , αβ = -1
= 4 + (2 - 1/3 )/( -1+1 - 1/3 )
= 4 + (5/3)/(-1/3)
= 4 - 5
c+d = -1
cd = (2+(1/(α+1)) ).(2+(1/(β+1)) )
= 4 + 2.(1/(β+1)) + 2.(1/(α+1)) + (1/(α+1)).(1/(β+1))
= 4 + 2.( (1/(β+1)) + (1/(α+1)) ) + 1/( (α+1).(β+1) )
= 4 + 2.( ( (α+1)+(β+1) )/( (α+1).(β+1) ) ) + 1/( (α+1).(1/(β+1) ) <= (α+1).(β+1) = -1/3 , (α+1)+(β+1) = 5/3
= 4 + 2.(5/3)/(-1/3) + 1/(-1/3)
= 4 + 2.(-5) - 3
= 4 - 10 - 3
c.d = -11
Persamaannya adalah :
x² - (-1)x + (-11) = 0
x² + x - 11 = 0 (A)
4. x² - (3p-2)x + 2p+8 = 0 => akarnya x₁ dan x₂
x₁ + x₂ = - (-(3p-2))/1
x₁ + x₂ = 3p - 2
x₁.x₂ = (2p+8)/1 = 2p+8
x₁,p,x₂ membentuk barisan geometri
r = p/x₁ = x₂/p
p² = x₁.x₂
p² = 2p+8
p²-2p-8 = 0
(p-4)(p+2) = 0
p = 4 atau -2
di soal dibilang bahwa p positif, maka :
p = 4
x₁ + x₂ = 3p - 2 <= p = 4
x₁ + x₂ = 3.4 - 2
x₁+x₂ = 10
x₁+x₂+p = 10 + 4 = 14 (E)
5. x²-25x+c = 0 => akar : a dan b (keduanya prima , b > a)
a+b = -(-25) = 25
ab = c
bilangan prima : 2,3,5,7,11,13,17,19,23,29,31,33, dan seterusnya
diantara bilangan diatas yang kalau ditambah menghasilkan 25 adalah 2+23 , berarti a dan b adalah 2 dan 23
a = 2 , b = 23 (karena b > a)
berarti ab = c = 2.23 = 46
c = 46
3a-b+c = 3.2 - 23 + 46
= 6 + 23
= 29 (C)