Explicación paso a paso:
b.
[tex]\frac{ \frac{5}{6} \div ( - \frac{1}{2} + 1 + \frac{2}{3}) }{ \frac{4}{3} + \frac{1}{6} } \\ \\ = \frac{ \frac{5}{6} \div \frac{ - 3 + 6 + 4}{6} }{ \frac{8 + 1}{6} } \\ \\ = \frac{ \frac{5}{6} \div \frac{7}{6} }{ \frac{9}{6} } \\ \\ = \frac{ \frac{5}{6} \times \frac{6}{7} }{ \frac{9}{6} } \\ \\ = \frac{ \frac{5}{7} }{ \frac{9}{6} } \\ \\ = \frac{5 \times 6}{7 \times 9} \\ \\ = \frac{10}{21}[/tex]
c.
[tex]\frac{ \frac{9}{13} + \frac{1}{ \frac{1}{4} + 3 } + 2 }{ - \frac{2}{ - \frac{1}{2} + \frac{5}{3} } + 3 } \\ \\ [/tex]
resolvemos el numerador:
[tex]\frac{9}{13} + \frac{1}{ \frac{1}{4} + 3 } + 2 \\ \\ = \frac{9}{13} + \frac{1}{ \frac{13}{4} } + 2 \\ \\ = \frac{9}{13} + \frac{1 \times 4}{ 13} + 2 \\ \\ = \frac{9}{13} + \frac{4}{ 13} + 2 \\ \\ =\frac{9 + 4}{13} + 2 \\ \\ = \frac{13}{13} + 2 \\ \\ = 1 + 2 \\ = 3[/tex]
ahora resolvemos el denominador:
[tex]- \frac{2}{ - \frac{1}{2} + \frac{5}{3} } + 3 \\ \\ = - \frac{2}{ \frac{ - 3 + 10}{6} } + 3 \\ \\ = - \frac{2}{ \frac{ 7}{6} } + 3 \\ \\ = - \frac{2 \times 6}{7} + 3 \\ \\ = \frac{ - 12}{7} + 3 \\ \\ = \frac{9}{7} [/tex]
Finalmente tenemos:
[tex] = \frac{3}{ \frac{9}{7} } \\ \\ = \frac{3 \times 7}{9} \\ \\ = \frac{7}{3} = 2 \frac{1}{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
b.
[tex]\frac{ \frac{5}{6} \div ( - \frac{1}{2} + 1 + \frac{2}{3}) }{ \frac{4}{3} + \frac{1}{6} } \\ \\ = \frac{ \frac{5}{6} \div \frac{ - 3 + 6 + 4}{6} }{ \frac{8 + 1}{6} } \\ \\ = \frac{ \frac{5}{6} \div \frac{7}{6} }{ \frac{9}{6} } \\ \\ = \frac{ \frac{5}{6} \times \frac{6}{7} }{ \frac{9}{6} } \\ \\ = \frac{ \frac{5}{7} }{ \frac{9}{6} } \\ \\ = \frac{5 \times 6}{7 \times 9} \\ \\ = \frac{10}{21}[/tex]
c.
[tex]\frac{ \frac{9}{13} + \frac{1}{ \frac{1}{4} + 3 } + 2 }{ - \frac{2}{ - \frac{1}{2} + \frac{5}{3} } + 3 } \\ \\ [/tex]
resolvemos el numerador:
[tex]\frac{9}{13} + \frac{1}{ \frac{1}{4} + 3 } + 2 \\ \\ = \frac{9}{13} + \frac{1}{ \frac{13}{4} } + 2 \\ \\ = \frac{9}{13} + \frac{1 \times 4}{ 13} + 2 \\ \\ = \frac{9}{13} + \frac{4}{ 13} + 2 \\ \\ =\frac{9 + 4}{13} + 2 \\ \\ = \frac{13}{13} + 2 \\ \\ = 1 + 2 \\ = 3[/tex]
ahora resolvemos el denominador:
[tex]- \frac{2}{ - \frac{1}{2} + \frac{5}{3} } + 3 \\ \\ = - \frac{2}{ \frac{ - 3 + 10}{6} } + 3 \\ \\ = - \frac{2}{ \frac{ 7}{6} } + 3 \\ \\ = - \frac{2 \times 6}{7} + 3 \\ \\ = \frac{ - 12}{7} + 3 \\ \\ = \frac{9}{7} [/tex]
Finalmente tenemos:
[tex] = \frac{3}{ \frac{9}{7} } \\ \\ = \frac{3 \times 7}{9} \\ \\ = \frac{7}{3} = 2 \frac{1}{3} [/tex]