gabrielnaibahoOperasi HimpunanJenis OperasiHukum dan sifat-sifat Operasi1Gabunan (Union)A U B = B U A disebut sifat komutatif gabungan(A U B) U C = A U (B U C) disebut sifat asosiatif gabunganA U Ø = AA U U = UA U A = AA U A’ = U Disebut sifat komplemen gabungan2Irisan (intersection)A W B = B W A disebut sifat komutatif irisanA W A = AA W = ØA W U = AA W A’ = Ø disebut sifat komplemen irisan(A W B) W C = A W (B W A) disebut sifat asosiatif irisan2DistributifA U (B W C) = (A U B) W (A U C); disebut sifat distributif gabungan terhadap irisan.A W (B U C) = (A W B) U (A W C); disebut sifat distributif irisan terhadap gabungan.
3SelisihA – A = ØA – Ø = AA – B = A W B’A – (BUC) = (A – B)W (A – C)A – (B W C) = (A – B)U(A – C)4Komplemen(A’)’ = AU’ = ØØ’ = UAUA’ = UAWA’ = UAWA’= Ø5Banyaknya Anggotan(A) + n(B) K n(AUB)n(AUB) = n(A) + n(B) – n(AWB)n(AUBUC) = n(A) + n(B) + n(C) – n(AWB) – n(BWC) – n(CWA) + n(AWBWC)n(A) + n(B) = n(AUB) + n(AWB)n(A) + n(B) + n(C) =n(AUBUC) + n(AWB) + n(AWC) + n(BWC) – n(AWBWC)
Bagian 01. Jenis Himpunan Bagian 02. Operasi Himpunan Bagian 03. Diagram Venn Bagian 04. Perkalian Himpunan
3SelisihA – A = ØA – Ø = AA – B = A W B’A – (BUC) = (A – B)W (A – C)A – (B W C) = (A – B)U(A – C)4Komplemen(A’)’ = AU’ = ØØ’ = UAUA’ = UAWA’ = UAWA’= Ø5Banyaknya Anggotan(A) + n(B) K n(AUB)n(AUB) = n(A) + n(B) – n(AWB)n(AUBUC) = n(A) + n(B) + n(C) – n(AWB) – n(BWC) – n(CWA) + n(AWBWC)n(A) + n(B) = n(AUB) + n(AWB)n(A) + n(B) + n(C) =n(AUBUC) + n(AWB) + n(AWC) + n(BWC) – n(AWBWC)
Bagian 01. Jenis Himpunan
Bagian 02. Operasi Himpunan
Bagian 03. Diagram Venn
Bagian 04. Perkalian Himpunan