Respuesta:
127
Explicación paso a paso:
Utilizando ley de tangente:
[tex]tan(x)=\frac{a}{3a}\\tan(x)=\frac{1}{3}\\x=tan^{-1}(\frac{1}{3} )\\[/tex]
[tex]tan(z)=\frac{2n}{n} \\tan(z)=2 \\\\z=tan^{-1}(2)[/tex]
[tex]tan(y)=\frac{m}{m}\\tan(y)=1\\y=tan^{-1}(1)[/tex]
donde la suma seria
[tex]tan^{-1}(\frac{1}{3} )+tan^{-1}(2)++tan^{-1}(1)=126.8698\\[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
127
Explicación paso a paso:
Utilizando ley de tangente:
[tex]tan(x)=\frac{a}{3a}\\tan(x)=\frac{1}{3}\\x=tan^{-1}(\frac{1}{3} )\\[/tex]
[tex]tan(z)=\frac{2n}{n} \\tan(z)=2 \\\\z=tan^{-1}(2)[/tex]
[tex]tan(y)=\frac{m}{m}\\tan(y)=1\\y=tan^{-1}(1)[/tex]
donde la suma seria
[tex]tan^{-1}(\frac{1}{3} )+tan^{-1}(2)++tan^{-1}(1)=126.8698\\[/tex]