Respuesta:
5) 1
6) c
Explicación paso a paso:
5)
= [tex]\left(1+\tan ^2\left(x\right)\right)\cos ^2\left(x\right)\tan \left(x\right)\cot \left(x\right)[/tex]
Identidad pitagórica: [tex]\tan ^2\left(x\right)+1=\sec ^2\left(x\right)[/tex]
= [tex]\sec ^2\left(x\right)[/tex] [tex]\cos ^2\left(x\right)\tan \left(x\right)\cot \left(x\right)[/tex]
Identidad inversa: [tex]\sec ^2\left(x\right)[/tex] = [tex]\frac{1}{\cos ^2\left(x\right)}[/tex]
= [tex]\frac{1}{\cos ^2\left(x\right)}[/tex] × [tex]\cos ^2\left(x\right)\tan \left(x\right)\cot \left(x\right)[/tex]
=[tex]\tan \left(x\right)\cot \left(x\right)[/tex]
Identidad de cociente: [tex]\tan \left(x\right)=\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex] y [tex]\cot \left(x\right)=\frac{\cos \left(x\right)}{\sin \left(x\right)}[/tex]
=[tex]\frac{\sin \left(x\right)}{cos\left(x\right)}[/tex] ×[tex]\frac{cos\left(x\right)}{sin\left(x\right)}[/tex]
=1
6)
=[tex]\frac{\sin \left(x\right)}{\tan \left(x\right)}+\tan \left(x\right)[/tex]
=[tex]\frac{\sin \left(x\right)}{\frac{\sin \left(x\right)}{\cos \left(x\right)}}+\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
=[tex]\cos \left(x\right)+\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
=[tex]\frac{\cos ^2\left(x\right)+\sin \left(x\right)}{\:\cos \left(x\right)}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
5) 1
6) c
Explicación paso a paso:
5)
= [tex]\left(1+\tan ^2\left(x\right)\right)\cos ^2\left(x\right)\tan \left(x\right)\cot \left(x\right)[/tex]
Identidad pitagórica: [tex]\tan ^2\left(x\right)+1=\sec ^2\left(x\right)[/tex]
= [tex]\sec ^2\left(x\right)[/tex] [tex]\cos ^2\left(x\right)\tan \left(x\right)\cot \left(x\right)[/tex]
Identidad inversa: [tex]\sec ^2\left(x\right)[/tex] = [tex]\frac{1}{\cos ^2\left(x\right)}[/tex]
= [tex]\frac{1}{\cos ^2\left(x\right)}[/tex] × [tex]\cos ^2\left(x\right)\tan \left(x\right)\cot \left(x\right)[/tex]
=[tex]\tan \left(x\right)\cot \left(x\right)[/tex]
Identidad de cociente: [tex]\tan \left(x\right)=\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex] y [tex]\cot \left(x\right)=\frac{\cos \left(x\right)}{\sin \left(x\right)}[/tex]
=[tex]\frac{\sin \left(x\right)}{cos\left(x\right)}[/tex] ×[tex]\frac{cos\left(x\right)}{sin\left(x\right)}[/tex]
=1
6)
=[tex]\frac{\sin \left(x\right)}{\tan \left(x\right)}+\tan \left(x\right)[/tex]
=[tex]\frac{\sin \left(x\right)}{\frac{\sin \left(x\right)}{\cos \left(x\right)}}+\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
=[tex]\cos \left(x\right)+\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
=[tex]\frac{\cos ^2\left(x\right)+\sin \left(x\right)}{\:\cos \left(x\right)}[/tex]