Respuesta:
A = [tex]\left \{ {{y=2} \atop {x=2}} \right. \pi x^{2}[/tex]
B=[tex]\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \geq \beta[/tex]
C=[tex]\frac{x}{y} \\ \lim_{n \to \infty} a_n[/tex]
D=Δ∧·[tex]\int\limits^a_b {x} \, dx \beta \sqrt[n]{x}[/tex]
E=[tex]\left \{ {{y=2} \atop {x=2}} \right. x_{123} \geq \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx[/tex]
Explicación paso a paso: por favor regálame una corona
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
A = [tex]\left \{ {{y=2} \atop {x=2}} \right. \pi x^{2}[/tex]
B=[tex]\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \geq \beta[/tex]
C=[tex]\frac{x}{y} \\ \lim_{n \to \infty} a_n[/tex]
D=Δ∧·[tex]\int\limits^a_b {x} \, dx \beta \sqrt[n]{x}[/tex]
E=[tex]\left \{ {{y=2} \atop {x=2}} \right. x_{123} \geq \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx[/tex]
Explicación paso a paso: por favor regálame una corona